
Reinforcement Learning - Lecture Notes

Sayantan Auddy

November 13, 2020

Contents

1 Introduction 4
1.1 A Motivating Example . 4
1.2 A Simplified View of RL . 4
1.3 Origins or Reinforcement Learning . 5
1.4 Machine Learning Paradigms . 6
1.5 Elements of Reinforcement Learning . 7
1.6 Categories of Reinforcement Learning Algorithms 7
1.7 Notable Applications of Reinforcement Learning 9

2 Markov Decision Process 10
2.1 Definition . 10
2.2 Goals and Rewards . 12
2.3 Episodes and Returns . 12
2.4 Unified Notation for Episodic and Continuing Tasks 14
2.5 Value Functions and Policies . 14
2.6 Bellman Expectation Equations . 16
2.7 Optimal Policies and Value Functions . 20
2.8 Bellman Optimality Equations . 20

3 Dynamic Programming 23
3.1 Policy Evaluation . 23
3.2 Policy Improvement . 24
3.3 Policy Iteration . 25
3.4 Value Iteration . 26

4 Model-free Prediction and Control 28
4.1 Model-free Prediction . 28

4.1.1 Monte Carlo Learning . 28
4.1.2 Temporal Difference Learning . 30
4.1.3 Advantages of TD Learning . 31

4.2 Model-free Control . 33
4.2.1 SARSA . 34
4.2.2 Q-Learning . 35

1

5 Value Function Approximation 37
5.1 Gradient Descent . 38
5.2 Approximating Value Functions with SGD 38
5.3 Linear Value Function Approximation . 39
5.4 Features for Linear Methods . 41
5.5 Algorithms for Prediction . 42
5.6 Algorithms for Control . 44
5.7 Convergence Properties and the Deadly Triad 45

6 Policy Gradients 46
6.1 Advantages of Policy-based RL . 46
6.2 Policy Optimization . 46
6.3 Policy Gradient with Finite Differences 47
6.4 Score Function and Liklihood Ratio . 48
6.5 Policy Gradient Theorem . 50
6.6 Actor-Critic Methods . 51

7 Summary 52

8 Learning Resources 56

9 References 57

2

These notes are based on the RL course notes from the previous year [https://iis.uibk.
ac.at/uibk/piater/courses/IIS/modules/RL/RL.notes.pdf] and also follow the con-
tent in Sutton and Barto (2nd edition) [10], as well as the lecture notes of David Silver
[http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html]. The notation fol-
lowed is from [10].

3

https://iis.uibk.ac.at/uibk/piater/courses/IIS/modules/RL/RL.notes.pdf
https://iis.uibk.ac.at/uibk/piater/courses/IIS/modules/RL/RL.notes.pdf
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

1 Introduction

Reinforcement Learning (RL) is an area of machine learning in which the objective is
to train an artificial agent to perform a given task in a stochastic environment by
letting it interact with its environment repeatedly (by taking actions which affect the
environment). While the agent aims to learn how to map observations (states) to actions,
there is no teacher which provides the correct actions during training. Instead, a scalar
feedback signal, known as a reward, is provided to the agent by the environment. The
agent tries to map observations to actions in a way so that the cumulative reward it
collects is maximized.

1.1 A Motivating Example

How would you train a program to play the game of tic-tac-toe? For a simple game such
as this, an exhaustive search is possible. Each possible board configuration represents
a distinct state of the game. Since the number of possible states is relatively small
and manageable, we can maintain a tree-like structure in which the possible moves are
maintained (start with the start state as the root node, the possible states reachable
from it are the root node’s children and so on). The leaf-nodes of this tree would be the
terminal states (win or loss configurations). An exhaustive search can then be performed
using techniques such as Minimax search 1 to find the game moves that lead to a winning
final state. However, such an approach is not scalable. As the number of states and
possible actions increases, it becomes impossible to maintain a game tree and to perform
an exhaustive search on it.

Figure 1: The game of tic-tac-toe [https://www.google.com/search?q=tic+tac+toe]

1.2 A Simplified View of RL

A simple way to visualize the agent-environment interaction is depicted in Fig. 2, where
an artificial agent learns to play a video game. Here the environment is comprised of the
game console (which controls the rules and dynamics of the game, but the agent cannot
access this internal information). At each step, the agent observes the current state of
the environment (as seen on the console screen), and based on this observation performs
an action by using the controller/joystick. In return it receives a numerical reward in the
form of the game score. In this scenario, the objective of an RL algorithm will be to help
the agent to learn to play the game by maximizing the game score that it attains.

1https://en.wikipedia.org/wiki/Minimax

4

https://www.google.com/search?q=tic+tac+toe
https://www.google.com/search?q=tic+tac+toe
https://en.wikipedia.org/wiki/Minimax

Figure 2: The reinforcement learning loop

For the agent, the reward signal forms a direct sensorimotor connection to the envi-
ronment - the agent is able to understand the consequences of its actions through the
rewards that it receives. However, the consequence of taking a particular action in a
given situation may not be apparent immediately, since a good action may lead to a good
reward much later after the action has been taken (delayed reward). For example,
pressing the correct button at time t = 0 can be rewarded at time t = 10. The agent
should also learn to choose actions that lead to good results in the long run rather than
actions which give good immediate rewards but are detrimental in the long run. Once
the agent discovers a good action for a given observation (state), it can choose to perform
the same action whenever this state is encountered (exploitation). However, a better
ploy would be to sometimes also explore other alternative actions, in case one of the other
actions turns out to be even better (exploration).

Distinguishing features of Reinforcement Learning

� No explicit teacher

� Learning by trial and error

� Learning through repeated agent-environment interactions

� Goal-oriented learning by maximizing cumulative reward

� Delayed rewards

� Need to balance exploitation vs exploration

1.3 Origins or Reinforcement Learning

The origins of reinforcement learning can be traced to various fields. Most prominent
among them are the fields of psychology and control theory. The concept of learning

5

through trial and error originated in studies in psychology dealing with animal learning
behavior. The concept of optimal control and its solution through the use of value
functions and dynamic programming comes from the field of control theory 2. Studies in
computational neuroscience focus on developing computational models that can explain
the observed behavior in animals. Several of the concepts in reinforcement learning
have parallels in neuroscience, for example, the use of a reward signal can be compared
with the neurotransmitter called dopamine which mediates pleasure in the brain 3. In
the early years of artificial intelligence, trial-and-error learning was explored as an
engineering principle 2. Artificial neural networks have also often been used as a function
approximator for implementing reinforcement learning algorithms and have led to many
recent advances in the field.

Figure 3: Origins of Reinforcement Learning

1.4 Machine Learning Paradigms

Reinforcement Learning is one of the three different kinds of machine learning techniques.
Fig. 4 highlights the key differences between the different machine learning paradigms.

Figure 4: Machine learning paradigms

2http://www.incompleteideas.net/book/ebook/node12.html
3http://www.princeton.edu/~yael/ICMLTutorial.pdf

6

http://www.incompleteideas.net/book/ebook/node12.html
http://www.princeton.edu/~yael/ICMLTutorial.pdf

1.5 Elements of Reinforcement Learning

Before diving into the formal description of the reinforcement learning setup, let us un-
derstand the meaning of some commonly used terms, as listed in Table 1.

Table 1: Informal description of common RL terms.

Term Description

Agent The artificial entity that is being trained to perform a task by learning from
its own experience. A learning agent must be able to sense the state of its
environment and must be able to take actions to affect the state.

Environment Comprises of everything outside the purview of the agent. The environment
has its own internal dynamics and rules which are usually not visible to the
agent. The boundary between agent and environment is typically not the
same as the physical boundary of a robot’s or animal’s body. Usually, the
boundary is drawn closer to the agent than that.

State Refers to the current situation of the environment (as observed by the agent),
which forms the basis for the decisions taken by the agent.

Action Choices made by the agent to change the state of the environment.

Reward The reward signal is a scalar quantity that is emitted by the environment
in response to the action taken by the agent. It defines the goal of the
reinforcement learning problem and defines what is good in the short term.
It forms the basis for evaluating the choices made by the agent.

Return The cumulative sum of rewards received or expected to be received by the
agent.

Goal The agent’s goal is to maximize the total amount of reward (the expected
return) it receives.

Policy Defines the learning agent’s behavior. The policy can be viewed as a function
that provides a mapping from perceived states to actions (or probability of
actions) to be taken in those states. It can be implemented as a lookup table
or as a function approximator such as a neural network.

Value
Function

Specifies what is good in the long run. Value of a state is the total amount
of reward that an agent can expect to accumulate starting from that state.
It is used to decide which actions should be taken. The most important
component of RL algorithms is a method for efficiently estimating values.

Model Something that mimics the behavior of the environment and allows inferences
to be made about how the environment will behave. In RL, models are used
for planning by deciding on a course of action by considering situations even
before they have occurred in reality.

1.6 Categories of Reinforcement Learning Algorithms

Based on the type of formulation used, reinforcement learning agents can be categorized
as follows:

� Value-based: A value function is maintained for estimating the desirability of
states and actions. There is no explicit policy function for mapping states to actions.

7

Actions which result in moving to a state with high value are preferred (implicit
policy).

� Policy-based: An explicit policy function is learned for mapping states to actions
directly, without going through value functions.

� Actor-Critic: Both a value function and a policy function are maintained. The
value function is utilized for improving the policy.

� Model-free: Value and/or policy functions are used without creating a model of
the environment.

� Model-based: A model of the environment is maintained for predicting the be-
havior of the environments, in addition to value or policy functions. If an accurate
model can be created, then interaction with the environment can be simulated for
training the agent.

� Tabular Methods : These methods use tables to list the values of each state or
state-action pair. These can only be used if the number of discrete states and
actions are not too high.

� Approximate Methods : These methods use some kind of function approximation
to represent value and policy functions. They are applicable in cases where the
number of states are very high or while dealing with continuous states and actions.

Figure 5: A rough categorization of RL algorithms

8

1.7 Notable Applications of Reinforcement Learning

Some notable applications of RL are listed below (view the papers or check the URLs to
know more):

(a) AlphaGo [8]

[https://deepmind.com/

research/alphago/]

(b) Deep Q Network [4]

[https://youtu.be/

W2CAghUiofY]

(c) Dexterous Object Manip-

ulation [5] [https://youtu.

be/jwSbzNHGflM?t=38s]

(d) Ball in a Cup [7]

[https://youtu.be/

Fhb26WdqVuE?t=47s]

(e) Autonomous flying [1] [https:

//www.youtu.be/VCdxqn0fcnE]

Figure 6: Notable Applications of Reinforcement Learning

9

https://deepmind.com/research/alphago/
https://deepmind.com/research/alphago/
https://youtu.be/W2CAghUiofY
https://youtu.be/W2CAghUiofY
https://youtu.be/jwSbzNHGflM?t=38s
https://youtu.be/jwSbzNHGflM?t=38s
https://youtu.be/Fhb26WdqVuE?t=47s
https://youtu.be/Fhb26WdqVuE?t=47s
https://www.youtu.be/VCdxqn0fcnE
https://www.youtu.be/VCdxqn0fcnE

2 Markov Decision Process

An agent being trained to perform a task by interacting with its environment must have
the capabilities for (i) sensing the state of the environment (ii) taking actions for affecting
the state (iii) realizing goals related to the state of the environment. A Markov Decision
Process (MDP) is a formal mathematical framework that is used to define the interation
between the learning agent and its environment in terms of states, actions and rewards.

2.1 Definition

For an agent interacting with its environment over a sequence of discrete timesteps, as
shown in Fig. 7, an MPD is formally defined as shown below:

Markov Decision Process

A Markov Decision Process (MDP) is formally defined as the tuple 〈S,A,P , r, γ〉,
where:

� S is a finite set of states.

� A is a finite set of actions.

� P is a state transition probability function, which defines the probability of
transitioning to the next state St+1 from the current state St on taking the
action At.

P(s′|s, a) = P[St+1 = s′|St = s, At = a]

� r is a reward function, which defines the expected reward to be received on
taking a particular action in a given state.

r(s, a, s′) = E[Rt+1|St = s, At = a, St+1 = s′]

� γ is a discount factor for assigning more importance to immediate rewards.

Consider an agent interacting with its environment at each of a sequence of discrete
timesteps t = 0, 1, 2, 3, ... as shown in Fig. 7.

Figure 7: The reinforcement learning loop with states, rewards and action.

At each timestep t, the agent receives the current state of the environment St ∈
S, and based on this state selects an action At ∈ A. One timestep later, at t + 1,

10

the agent receives the reward Rt+1 ∈ R and the new environment state St+1 ∈ S.
This gives rise to a trajectory (sequence of encountered states, actions and rewards)
S0, A0, R1, S1, A1, R2, S2, A2, R3, ..., as shown in Fig. 8. The question now is that if the
agent at time t sees the state St and needs to decide on the action At, does it need to
consider all the states, actions and rewards that happened before time t?

Figure 8: Sequence of states, actions and rewards.

One of the most important assumptions that RL algorithms rely on is the assumption
of states having the Markov Property. This assumption is about the current state being
enough for the agent to base its action on, and is the basis on which the theoretical
foundation of many RL algorithms lies.

Markov Property

A state is said to possess the Markov Property when it includes information
about all aspects of the past agent-environment interaction that make a difference
for the future. In other words, if the present state is known, then we can make
future decisions based on this state without needing to worry about the previous
states, rewards and actions.

Example: Recycling Robot (example 3.3 in [10])

Consider a mobile robot that has the task of collecting empty cans in an office
environment. It can perform 3 actions: (i) search for an empty can by moving
about (ii) wait for someone to give it a can (iii) recharge its battery by moving
to the charging station. The decision to take a particular action is taken based
on the 2 possible states of its battery: (i) low (ii) high. Thus the set of states is
S = {low , high} and the set of actions is A = {search,wait , recharge}. Moreover,
when the battery is high, the robot will not try to recharge its battery unnecessarily.
Thus, actions in the state high are denoted as A(high) = {search,wait}. Similarly,
actions in the low state are A(low) = {search,wait , recharge}. If we have the
transition probabilities of switching between states and the corresponding rewards
(as shown in the figure below), then we have the definition of the complete MDP
for this scenario. The transition probabilities and rewards can also be summarized
in the form of a table.

s a s ′ p(s ′|a, s) r(s, a, s ′)
high search high α rsearch
high search low 1− α rsearch
low search high 1− β −3
low search low β rsearch
high wait high 1 rwait

high wait low 0 -
low wait high 0 -
low wait low 1 rwait

low recharge high 1 0
low recharge low 0 -

11

Exercise: Markovian and Non-Markovian Env.

1. Devise an example task that fits into the MDP framework, identifying for
each its states, actions, and rewards.

2. Can you think of an environment in which states do not have the Markov
property?

2.2 Goals and Rewards

As stated previously, the reward Rt ∈ R is a scalar quantity that forms the basis of
evaluating the action taken by an agent. The goal of an RL agent is to maximize the
cumulative reward over the long run.

Any goal can be thought of as the maximization of the expected value of the cu-
mulative reward. However, we should be careful about designing the reward so that it
specifies what needs to be achieved, but not how to achieve it. For example, in chess,
capturing opponent peices can be thought of as a sub-strategy. However, we should be
careful about assigning rewards for capturing pieces, since the agent may start to prefer
taking pieces than the final objective of winning (it may choose to take a piece even at
the risk of sacrificing the king!).

The agent must be able to measure how well it is performing frequently over its
lifespan. If rewards are sparse (for example, a robot travelling through a maze gets a
reward of +1 only on finding a way out, and -1 otherwise, but nothing in between), the
robot may have difficulty in evaluating its individual actions that led to success or failure.

Exercise: Maze Runner

What is a good choice of rewards for a maze solving agent?

2.3 Episodes and Returns

Reinforcement learning tasks can be of two types:

� Episodic Tasks: The agent-environment interaction breaks down naturally into
subsequences known as episodes, which end with a terminal state ST at timestep
T . Once the terminal state has been reached, the agent’s state is reset to its initial
state S0 and a new episode begins where the agent again starts interacting with the
environment. In an MDP, all non-terminal states are denoted by the set S and the
set containing all states (terminal and non-terminal) is denoted by S+.

12

Examples of Episodic Tasks

Shown below are two episodic tasks from the OpenAI Gym toolkit 4

� Continuing Tasks: The agent-environment interaction does not break down in
clearly identifiable sub-sequences, but carries on indefinitely (T =∞).

Examples of Continuinig Tasks

Gas pipeline monitoring, heating system regulator for a large building.

For episodic tasks, if the agent expects to receive rewards Rt+1, Rt+2, Rt+3, ..., RT from
time t onwards till time T , the return Gt is defined as:

Gt=̇Rt+1 +Rt+2 +Rt+3 + ...+RT =
T∑
k=0

Rt+k+1 (1)

However, for continuing tasks, T = ∞ and so Gt may also evaluate to ∞ (assuming
rewards are positive). In order to avoid this (and also for mathematical convenience),
a discounting factor γ ∈ [0, 1) is employed to limit the value of Gt to a finite quantity.
By using γ, we assign less importance to rewards that can occur far into the future and
more importance to rewards that are more immediately expected. Thus, by using the
discounting factor γ, Eq. 1 is modified into

Gt=̇Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2)

If we choose γ = 0, then only the next immediate reward is considered (myopic or short-
sighted behavior). When γ ≈ 1, all future rewards are given almost equal importance.
The relationship between returns at successive steps can be easily derived:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ...

= Rt+1 + γ(Rt+2 + γRt+3 + ...)

= Rt+1 + γGt+1 (3)

Exercise: Calculate the Return

Suppose γ= 0.5 and the following sequence of rewards is expected R1 = 1, R2 =
2, R3 = 6, R4 = 3, and R5 = 2, with T = 5. What are G0, G1, ..., G5? Hint: Work
backwards.

4https://gym.openai.com/envs

13

https://www.youtube.com/watch?v=XP4gU_ACxAM&list=PLL02NptKtMv_W8lo67D-nlgQyExu2W2jr
https://gym.openai.com/envs

Example: Pole Balancing

The task of pole balancing or cartpole 5 can be set up as an episodic task as well
as a continuing task.

� Episodic Task (undiscounted): reward = +1 for each step before failure,
return at each step = # steps to failure

� Continuing Task: reward = -1 on failure, 0 otherwise , return at each step
is related to −γk, for k steps before failure

In both cases return is maximized by avoiding failure as long as possible.

2.4 Unified Notation for Episodic and Continuing Tasks

Episodic tasks can be viewed as a special case of continuing tasks where the terminal
state state ST acts as an absorbing state for which the reward is always 0 for any action
taken in that state, as shown in Fig. 9.

Figure 9: Unified notation for episodic and continuing tasks.

Thus, we can cover both continuing and episodic tasks by writing

Gt =
∞∑
k=0

γkRt+k+1 (4)

where γ can be 1 only if a zero-reward absorbing state is always reached.

2.5 Value Functions and Policies

As briefly mentioned in Section 1.6, value-based reinforcement learning algorithms esti-
mate value functions (functions of state or state-action pairs). Value functions are defined
in terms of the expected return (E[Gt]) and denote how desirable it is to be in a given
state, or how desirable it is to be in a given state and take a particular action.

Value functions are defined with respect to a policy (that is a particular way of acting
or the behavior of the agent) (see Table 1).

Policy

A policy defines the behavior of an agent. It is a function which gives the mapping
from states to the probabilities of selecting an action.

pi(a|s) = P[At = a|St = s] (5)

5https://gym.openai.com/envs/CartPole-v1/

14

https://www.youtube.com/watch?v=w5a2zb6EJcc
https://gym.openai.com/envs/CartPole-v1/

If we have a policy π (a way of behaving), then it is possible to use value functions
to figure out how good it is to be in a particular state if the same policy π is followed in
the future. Accordingly, two different kinds of value functions can be defined.

State-value Function

The state-value function of a state s under a policy π is defined as the expected
return when starting in s and following π thereafter.

vπ(s) = Eπ[Gt|St = s] = Eπ[
∞∑
k=0

γkRt+k+1|St = s] ∀s ∈ S (6)

Action-value Function

The action-value function of a state s and action a under a policy π is defined as the
expected return when starting in s, taking the action a (which may not necessarily
be predicted by π) and following π thereafter.

qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s, At = a] ∀s ∈ S, a ∈ A

(7)

Table 2 summarizes the descriptions and mathematical expressions for the important
terminology discussed so far.

Table 2: Summary of Terms

Term Description Expression

MDP
Framework defining
agent-environment
interaction

〈S,A,P , r, γ〉
where
S: finite set of discrete states
A: finite set of discrete actions
P : state transition probability function
r: reward function
γ: discount factor.

Markov
Property

Current state includes
all information about
the past

-

Reward
Scalar quantity for
evaluating the agent’s
action.

Rt ∈ R

Return
Discounted sum of fu-
ture rewards.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1

= Rt+1 + γGt+1

Goal
Maximize expected
Return

maximize(E[Gt]) at each t

15

Table 2: Summary of Terms

Term Description Expression

Policy
Mapping from states
to probabilities of ac-
tions.

π(a|s) = P[At = a|St = s]

State-value
Function

Expected Return
when starting in
s and following π
thereafter.

vπ(s) = Eπ[Gt|St = s]

= Eπ[
∞∑
k=0

γkRt+k+1|St = s] ∀s ∈ S

Action-value
Function

Expected Return
when starting in s,
taking action a and
following π thereafter.

qπ(s, a) = Eπ[Gt|St = s, At = a]

= Eπ[
∞∑
k=0

γkRt+k+1|St = s, At = a]

∀s ∈ S, a ∈ A

2.6 Bellman Expectation Equations

A fundamental property of value functions is that they satisfy recursive relationships
between values of current and next states (similar to the relationship for the expected
return in Eq. 3).

The Bellman Expectation equation for vπ expresses a relation between the value
of a state and the values of its successor states. This is a system of linear equations (one
for each state in the case of vπ, or one for each state-action pair in the case of qπ), which
has a unique solution.

The state-value function of a state s is defined as the expectation over the returns Gt

starting from state St = s:

vπ(s) = Eπ
[
Gt

∣∣∣ St = s
]

(by definition)

= Eπ
[
Rt+1 + γGt+1

∣∣∣ St = s
]

(using Eq. 3)

= Eπ
[
Rt+1 + γEπ

[
Gt+1

∣∣ St+1 = s′
] ∣∣∣ St = s

]
(using the law of total expectation)6

= Eπ
[
Rt+1 + γvπ(s′)

∣∣∣ St = s
]

(inner E gives value of the successor state s′) (8)

=
∑
a

π
(
a
∣∣ s)∑

s′,r

p
(
s′, r

∣∣ s, a)[r + γvπ(s′)
]
∀s, s′ ∈ S a ∈ A (9)

(replacing the expectation with summations over probabilities)

The Bellman equation (Eq. 9) using the summation over probabilities can be convie-
niently represented by using a backup diagram, as shown in Fig. 10. A backup di-
agram shows all states, actions and rewards that participate in a backup (update of a
value based on downstream values). In the diagram, time flows from top to bottom and
states are not necessarily distinct (a backup diagram is not a transition graph).

6https://en.wikipedia.org/wiki/Law_of_total_expectation

16

https://en.wikipedia.org/wiki/Law_of_total_expectation

Fig. 10 (left) shows the backup diagram for the state-value function. The white circle
at the top represents the current state s and the white circles at the bottom represent the
successor states s′ that can be reached by taking an action a according to the policy π.
Actions are represented by the black dots and the arrows represent the transitions (only
a few possible actions/states are shown). Once we have the values of the lower states,
then they can be combined using Eq. 9 to obtain the value of the upper state.

Note that for a state, the choice of an action rests with the agent (controlled by policy π
shown in red), but when that action is taken, the resulting state that is produced depends
completely on the environment (based on the dynamics of the environment - probability
p shown in blue).

The inner summation in Eq. 9 sums up the discounted values of each successor state
s′ plus the reward multiplied by the probability of reaching s′. These values are then
multiplied by the probability of taking the action a that may lead to s′ and summed up
using the outer summation in Eq. 9.

Bellman Expectation Equation for state-value functions

The Bellman Expectation equation for the state-value function expresses a relation
between the value of a state s and the values of its successor states s′. This is a
system of linear equations (one for each state), which has a unique solution.

vπ(s) = Eπ
[
Rt+1 + γvπ(s′)

∣∣∣ St = s
]

=
∑
a

π
(
a
∣∣ s)∑

s′,r

p
(
s′, r

∣∣ s, a)[r + γvπ(s′)
]
∀s, s′ ∈ S a ∈ A

Figure 10: Backup diagrams for the Bellman Expectation equations for the (left) state-value function
(right) action-value function.

Similar to the Bellman Expectation Equation for the state-value function, there is
also a similar Bellman equation for the action-value function, which represents the re-
cursive relationship between action-values of state-action pairs and their successors. The
corresponding backup diagram is shown in Fig. 10 (right).

qπ(s, a) = Eπ
[
Gt

∣∣∣ St = s, At = a
]

= Eπ
[
Rt+1 + γGt+1

∣∣∣ St = s, At = a
]

= Eπ
[
Rt+1 + γEπ

[
Gt+1

∣∣ St+1 = s′, At+1 = a′
] ∣∣∣ St = s, At = a

]
= Eπ

[
Rt+1 + γqπ(s′, a′)

∣∣∣ St = s, At = a
]

(10)

=
∑
s′

p
(
s′
∣∣ s, a)[r + γ

∑
a′

π(a′|s′)qπ(s′, a′)
]
∀s, s′ ∈ S a, a′ ∈ A (11)

17

Bellman Expectation Equation for action-value functions

The Bellman Expectation equation for the action-value function expresses a relation
between the action-value of a state s and action a and the values of its successor
states s′ and actions a′. This is a system of linear equations (one for each state-
action pair), which has a unique solution.

qπ(s, a) = Eπ
[
Rt+1 + γqπ(s′, a′)

∣∣∣ St = s
]

=
∑
s′

p
(
s′
∣∣ s, a)[r + γ

∑
a′

π(a′|s′)qπ(s′, a′)
]
∀s, s′ ∈ S a, a′ ∈ A

Example: Gridworld (example 3.5 in [10])

The following figure shows an example where the Bellman expectation equation is
used recursively to compute the value function of a given policy in a gridworld.

� Rewards: -1 for going off the edge; 0 otherwise except for the special cases
shown

� Discount Factor: γ = 0.9

� Environment: Deterministic as shown

� Policy: Uniform random

� Negative values near edge, A’s return less than immediate reward and B’s is
greater than immediate reward

Exercise: 2-State Random Walk (solved)

Calculate the state-value function of the states A and B (assuming policy π chooses
actions randomly) using the Bellman expectation equation for the folowing scenario:

� States: A and B

� Actions: stay or switch (equal probabilities, deterministic effect)

� Rewards: +2 for A→B; -1 for B→A; 0 otherwise

� Discount Factor: γ = 0.9

(solution on next page)

18

Exercise: 2-State Random Walk (solved)

Solution :

An easy way to work out problems such as this is to use the backup diagrams. For
every distinct state, a backup diagram is drawn with that state as the root. For
example, for the states A and B respectively as root, the following diagrams can
be drawn:

Each of these diagrams will give us a linear equation where the unknowns are
V(A) and V(B). Therefore we will end up with 2 equations in 2 unknowns.

Writing down the Bellman expectation equation again:

vπ(s) =
∑
a

π
(
a
∣∣ s)∑

s′,r

p
(
s′, r

∣∣ s, a)[r + γvπ(s′)
]
∀s, s′ ∈ S a ∈ A

For the diagram on the left (s = A), filling in the values of p, r and γ, we see that
the inner summation over probabilities for a = stay can be written as {1.0(0 +
0.9V (A)) + 0.0(2 + 0.9V (B))} and the inner summation for a = switch can be
written as {0.0(0 + 0.9V (A)) + 1.0(2 + 0.9V (B))}. Since the probability for either
action is 0.5, the outer summation over the 2 actions can be written out to get
V (A). Thus:

V (A) = 0.5{(1.0(0 + 0.9V (A)) + 0.0(2 + 0.9V (B))}
+ 0.5{(0.0(0 + 0.9V (A)) + 1.0(2 + 0.9V (B))} = 0.45V (A) + 0.45V (B) + 1.0

⇒ 0.55V (A)− 0.45V (B) = 1 (eq. I)

Performing the same steps for the diagram on the right (s = B), we get:

V (B) = 0.5{(0.0(−1 + 0.9V (A)) + 0.1(0 + 0.9V (B))}
+ 0.5{(1.0(−1 + 0.9V (A)) + 0.0(0 + 0.9V (B))} = 0.45V (B) + 0.45V (A)− 0.5

⇒ 0.45V (A)− 0.55V (B) = 0.5 (eq. II)

((eq. II)÷ 0.45)− ((eq. II)÷ 0.55)⇒ 11

9
V (A)− 9

11
V (A) =

20

9
− 10

11
⇒ V (A) = 3

1

4

Solving for V (B), we get V (B) = 1
3

4

19

2.7 Optimal Policies and Value Functions

The task of RL is to find a policy that achieves the maximum possible reward in the long
run. By using the Bellman Expectation equations (Eq. 8 - 11), it is possible to evaluate
the value of a given policy. This makes it possible to define a partial ordering over
policies (comparing policies according to their value functions). A policy π is considered
to be better than a policy π′:

π > π′ if and only if vπ(s) ≥ v ′π(s) ∀s ∈ S (12)

The optimal policy π∗ (best possible policy) is better than or equal to all other policies.
Consequently, the optimal state-value (or action-value) function v∗ is the maximum state-
value (action-value) function among all policies.

v∗(s) = max
π

vπ(s) ∀s ∈ S (13)

q∗(s, a) = max
π

qπ(s, a) ∀s ∈ S a ∈ A (14)

2.8 Bellman Optimality Equations

The Bellman Optimality Equation for the optimal value-function v∗ expresses the fact
that the value of a state under an optimal policy must be equal to the expected return
for the best action from that state.

v∗(s) = max
a∈A(s)

qπ∗(s, a)

= max
a

Eπ∗
[
Gt

∣∣ St = s, At = a
]

= max
a

Eπ∗
[
Rt+1 + γGt+1

∣∣ St = s, At = a
]

(using Eq. 3)

= max
a

Eπ∗
[
Rt+1 + γv∗(St+1)

∣∣ St = s, At = a
]

(15)

= max
a

∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γv∗(s
′)
]

(16)

(removing the expectation by summing over states and rewards)

In the backup diagram shown in Fig. 11 (left), the max operator operates over all the
possible actions that can be taken from state s, and the summation is performed for all
possible states and rewards that can follow the taking of action a (compare with Eq. 16).

Bellman Optimality Equation for v∗

v∗(s) = max
a

Eπ∗
[
Rt+1 + γv∗(St+1)

∣∣ St = s, At = a
]

= max
a

∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γv∗(s
′)
]

Similarly, there is a Bellman Optimality Equation for the optimal action-value func-
tion q∗ also (Eq. 17 and 18). The corresponding backup diagram (Fig. 11 (right)) shows

20

that the summation in Eq. 18 is performed over all possible state transitions on taking
action a and the max is performed over the possible successor actions a′.

Bellman Optimality Equation for q∗

q∗(s, a) = E
[
Rt+1 + γmax

a′
q∗(St+1, a

′)
∣∣ St = s, At = a

]
(17)

=
∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γmax
a′

q∗(s
′, a′)

]
(18)

Figure 11: Backup diagrams for the Bellman Optimality equations for (left) v∗ (right) q∗.

The Bellman Optimality equations are a system of non-linear equations (due to the use of
the max operator). If the environment dynamics p is known, then an exact solution can
be obtained. Once we have the optimal value function v∗, then the actions which appear
best after a one-step search (looking at the values of the successor states and choosing
the action that leads to the successor with the highest value) will lead to optimal actions
(although this looks like a greedy strategy, v∗ already contains information about the
future). If we have the optimal action-value function q∗, then even a one-step search is
not necessary. For any state s, the agent can simply find the action a that results in the
maximum value (maximizes q∗(s, a)).

Determining π∗ from v∗ or q∗

� v∗ is known: Take an action that is greedy w.r.t. v∗ (search through actions)

� q∗ is known: In state s take the action a that has the maximum value of
q∗(s, a) (no search is necessary)

For example, if v∗ for the gridworld is known, π∗ can be easily calculated by choosing
the action that leads to the state with the highest value according to v∗.

21

Exercise: v∗ for Recycling Robot

Write down the Bellman optimality equation(s) for v∗ for the recycling robot.

v∗(s) = max
a

∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γv∗(s
′)
]

22

3 Dynamic Programming

Dynamic Programming (DP) is a technique for solving complex problems by (i) break-
ing the problem down to smaller sub-problems, and (ii) solving the sub-problems and
combining the results.

DP assumes full knowledge of the MDP (environment dynamics), and hence is of
limited utility in practice. However, it is still theoretically very important because it
forms the basis for other techniques which try to approximately achieve the effects of DP
with less computation and without assuming perfect knowledge of the environment.

In DP, we assume a finite MDP (Markov Decision Process) in which the sets of
states and actions are finite. For continuous state and action spaces, these spaces can be
quantized by using techniques such as tile coding and then the finite-state DP methods
can be applied.

Prediction and Control

A key idea of Dynamic Programming is to use value functions to organize and
structure the search for good policies. Two types of problems are handled:
predicting the value function for an existing policy and determining the optimum
policy.

Prediction
Problem: Calculate the value function for a policy
Input: MDP 〈S,A,P , r, γ〉 and policy π
Output: Value function vπ

Control
Problem Calculate the optimal policy
Input: MDP 〈S,A,P , r, γ〉
Output: Optimal value function v∗ and optimal policy π∗

3.1 Policy Evaluation

Policy evaluation refers to the prediction problem stated above.

Problem Compute the state-value function vπ for an arbitrary policy π.

Solution Iterative application of the Bellman Expectation backup using synchronous
backups (all states updated every time).

For all states s ∈ S, at each iteration k + 1, update vk+1(s) from vk(s) using

vk+1(s) = Eπ
[
Rt+1 + γvk(St+1)

∣∣ St = s
]

(19)

=
∑
a

π
(
a
∣∣ s)∑

s′,r

p
(
s′, r

∣∣ s, a)[r + γvk(s
′)
]
∀s ∈ S (20)

23

Starting from an initial value v0, repeated updates as shown above results in a sequence
of value functions which converge to vπ as k approaches∞ (in practice sooner than that):

v0 → v1 → v2 → ...→ vπ

When the change in the updated value is negligible, the value evaluation process is said
to have converged.

Algorithm 1 Iterative Policy Evaluation for estimating V ≈ vπ

Input: π, the policy to be evaluated
Parameter: θ > 0, a small threshold for determining the accuracy of estimation
Initialize: V (s) ∀s ∈ S+, a table used for approximating vπ. Initialization can be
arbitrary (or set everything to 0), except for V (terminal) = 0
repeat

∆← 0
for each s ∈ S do
v ← V (s)
V (s)←

∑
a

π
(
a
∣∣ s)∑

s′,r

p
(
s′, r

∣∣ s, a)[r + γV (s′)
]

∆← max(∆,
∣∣ v − V (s)

∣∣)
end for

until ∆ < θ

Exercise: Policy Evaluation Algorithm

For the gridworld example discussed on pg. 17 of this document (example 3.5 in [10]),
the final value-function for the uniform random policy is shown below. Verify that the
value of the state V (row:2,col:2)=0.71 does not change appreciably using the update step
in the Policy Evaluation algorithm:

V (s)←
∑
a

π
(
a
∣∣ s)∑

s′,r

p
(
s′, r

∣∣ s, a)[r + γV (s′)
]

3.2 Policy Improvement

The reason why we want to evaluate policies is for comparing policies and eventually
finding better policies. For a given state s, we would like to find out whether or not we
should change the policy π by deterministically choosing an action a 6= π(s) and then to
follow π thereafter.

24

The value of the policy π is vπ. If we take the action a 6= π(s) and then follow π, then
the action-value of π is:

qπ(s, a) = E
[
Rt+1 + γvπ

(
St+1

) ∣∣ St = s, At = a
]

(21)

Now if vπ(s) ≤ qπ(s, a), then it is better to follow the modified policy π′ (take action
a whenever state s is encountered). It can be shown that if vπ(s) ≤ qπ(s, a), then
vπ(s) ≤ v ′π(s) (value of the modified policy is more)(proof on pg. 78 of [10]).

Thus, in order to improve the policy π, it is natural to act greedily at each step and
choose the policy that gives the best value. In other words, a better, modified policy π′

can be obtained from π by:

π′(s) = arg max
a

qπ
(
s, a
)

= arg max
a

E
[
Rt+1 + γvπ

(
St+1

) ∣∣ St = s, At = a
]

(22)

Suppose the new policy π′ is as good as π but not better than it. Then v ′π = vπ. So, it
follows that

v ′π(s) = max
a

E
[
Rt+1 + γvπ

(
St+1

) ∣∣ St = s, At = a
]

which is the same as the Bellman Optimality Equation (Eq. 15). Thus, when v ′π = vπ,
both v ′π and vπ must be the optimal value function v∗, and π′ and π must be the optimal
policy π∗.

3.3 Policy Iteration

Policy iteration is the process of generating monotonically improving policies and value
functions by alternative use of policy evaluation (Sec. 3.1) and policy improvement (Sec.
3.2). This process ultimately converges to the optimal policy and value function.

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ . . .
I−→ π∗

E−→ v∗

where E refers to policy evaluation and I refers to policy improvement. This process is
depicted in Fig. 12.

Figure 12: Policy Iteration.

25

Algorithm 2 Policy Iteration for estimating V ≈ v∗ and π ≈ π∗

1. Initialization
V (s) ∈ R and π(s) = A ∀s ∈ S

2. Policy Evaluation
Input: π, the policy to be evaluated
Parameter: θ > 0, a small threshold for determining the accuracy of estimation
Initialize: V (s) ∀s ∈ S+

repeat
∆← 0
for each s ∈ S do

v ← V (s)
V (s)←

∑
a

π
(
a
∣∣ s)∑

s′,r

p
(
s′, r

∣∣ s, a)[r + γV (s′)
]

∆← max(∆,
∣∣ v − V (s)

∣∣)
end for

until ∆ < θ
3. Policy Improvement
policy-stable← true
for each s ∈ S do
old-action← π(s)
π(s) = arg max

a

∑
s′,r

p(s′, r|s, a)[r + γV (s′)]

If old-action 6= π(s), then policy-stable← false
end for
If policy-stable, then stop and return V ≈ v∗ and π ≈ π∗; else go to 2.

Exercise: Policy Iteration Algorithm

The policy iteration algorithm has a subtle bug in that it may never terminate if
the policy continually switches between two or more policies that are equally good.

Can you modify the pseudocode so that convergence is guaranteed?

3.4 Value Iteration

Although the policy iteration algorithm (Algo. 2) can compute the optimal policy, the
disadvantage is that it involves the process of policy evaluation (Algo. 1), which itself is
an iterative process.

Value Iteration turns the Bellman optimality equation (Eq. 15 and 16) into an update
rule, without needing to evaluate intermediate policies iteratively.

vk+1(s) = max
a

E
[
Rt+1 + γvk(St+1)

∣∣ St = s, At = a
]

(23)

= max
a

∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γvk(s
′)
]
∀s ∈ S (24)

For any arbitrary initialization v0, this converges to v∗. The update in Eq. 23 is same as
Policy Evaluation (Eq. 19) except that max is taken over all actions. Finally, the optimal
policy π∗ is obtained by acting greedily with respect to v∗.

26

Algorithm 3 Value Iteration for estimating π ≈ π∗

Algorithm parameter θ > 0
Initialize V (s), ∀s ∈ S+ arbitrarily, except V (terminal) = 0
repeat

∆← 0
for each s ∈ S do
v ← V (s)
V (s)← max

a

∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γV (s′)
]

∆← max
(
∆, |v − V (s)|

)
end for

until ∆ < θ
Output a deterministic policy π ≈ π∗, such that
π(s) = arg max

a

∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γV (s′)
]

Table 3 summarizes the 3 algorithms discussed in this section.

Table 3: Summary of Dynamic Programming algorithms

Problem Bellman Equation Algorithm
Prediction Bellman Expectation Equation Iterative Policy Evalutaion
Control Bellman Expectation Equation +

greedy policy improvement
Policy Iteration

Control Bellman Optimality Equation Value Iteration

27

4 Model-free Prediction and Control

Till now, for the task of finding the optimal way for the agent to behave, we have assumed
that we know the MDP (that is we know what the state transition probability function
P and the reward function r are). For example, in Sec. 2 and Sec. 3, the gridworld
environments were completely deterministic and the rewards for transitioning between
specific states was pre-defined. In the real world, however, we do not have the details of
the MDP and so we must infer the environmental dynamics through repeated interactions.

Model-free Prediction and Control

Model-free prediction and control deals with the task of determining the value of
a policy or of determining the optimal value function and the optimal policy when
the MDP is not known by learning from experience.

4.1 Model-free Prediction

In dynamic programming, the value of a policy was evaluated using the iterative policy
evaluation algorithm (Algo. 1) by utilizing the knowledge about the MDP. In model-
free prediction, the same task is accomplished withouth the MDP, by learning from the
agent’s experience. This can be achieved by using 2 groups of methods: (i) Monte Carlo
learning (MC-learning) and (ii) Temporal Difference learning (TD-learning).

4.1.1 Monte Carlo Learning

Monte Carlo learning involves learning the value function directly from complete episodes
of experience (no bootstrapping) by using the average of the sampled returns as an
estimate of the value of a state. This only applies to episodic tasks which have a terminal
state ST and is the simplest possible technique for performing model-free prediction.

Monte Carlo Policy Evaluation

� Learn the value function directly from episodes of experience.

� Learns from complete episodes (no bootstrapping) and is only applicable for
episodic tasks.

� Uses the empirical mean return after an episode (instead of the expected
return) as the value.

The goal of MC-learning for policy evaluation is to learn vπ from episodes of experience
such as S0, A0, R1, S1, A1, R2, ..., ST ∼ π. The return at time t is defined as the discounted

sum of rewards from t onwards: Gt =
T∑
k=0

γkRt+k+1 (modified Eq. 4 by using T instead

of ∞). Recall also, that the value function is defined as the expectation over the return
vπ = Eπ[Gt|St = s] (Eq. 6). MC-learning uses the empirical mean return (average of
returns observed from roll-outs7) instead of this expected return. As more and more
returns are observed, the average should converge to the expected value.

7A full, terminal episode is called a roll-out.

28

An algorithm for MC-learning is listed in Algo. 4. Here episodes are generated
continuously. In each episode, the value of a state is updated with the average return
whenever that state is encountered for the first time in that episode, leading to the name
First-visit MC Prediction.

Algorithm 4 First-visit MC Prediction, for estimating V ≈ vπ

Input:
Policy π to be evaluated

Initialize
V (s) ∈ R, ∀s ∈ S arbitrarily
Returns(s)← an empty list ∀s ∈ S

repeat
Generate an episode using π: S0, A0, R1, S1, A1, R2, ..., ST−1, AT−1, RT

G← 0
for each step of episode, t = T − 1, T − 2, ..., 0 do
G← Rt+1 + γG
if St does not appear in S0, S1, .., St−1 then

Append G to Returns(s)
V (St)← average(Returns(St))

end if
end for

until forever

Instead of updating the value of the state only on its first occurance in an episode, we can
also update the value whenever the state is encountered in the episode (by removing the
if condition in Algo. 4). This would result in a modified algorithm known as Every-visit
MC Prediction.

Another way of achieving the same effect is to update the value of V (St) incrementally,
instead of calculating the entire average over Returns(St) every time.

Incremental Mean

The means µ1, µ2, ... of a sequence x1, x2, ... can be computed incrementally as:

µk =
1

k

k∑
j=1

xj =
1

k

(
xk+

k−1∑
j=1

xj
)

=
1

k

(
xk+(k−1)µk−1

)
= µk−1+

1

k
(xk−µk−1) (25)

We can maintain a counter N(St) for each state which records the number of times the
states have been visited. These counters are initialized to 0 and persist across episodes,
and are incremented whenever (or the first time) the respective state is encountered during
an episode. Using Eq. 25 and noting that V (St) stores the average return, the step for
updating V (St) , we can modify Algo. 4 slightly to the following, simpler algorithm.

29

Algorithm 5 Incremental First-visit MC Prediction, for estimating V ≈ vπ

Input:
Policy π to be evaluated

Initialize
V (s) ∈ R, ∀s ∈ S arbitrarily
N(s) ∈ Z an integer counter ∀s ∈ S

repeat
Generate an episode using π: S0, A0, R1, S1, A1, R2, ..., ST−1, AT−1, RT

G← 0
for each step of episode, t = T − 1, T − 2, ..., 0 do
G← Rt+1 + γG
if St does not appear in S0, S1, .., St−1 then
N(St)← N(St) + 1

V (St)← V (St) + 1
N(St)

(
G− V (St)

)
end if

end for
until forever

For non-stationary problems, it is useful to track a running mean, by removing the counter
N(St) and instead using a constant α. Thus, the update step is written as follows.

Monte Carlo Policy Evaluation Update for learning V ≈ vπ

V (St)← V (St) + α
(
Gt − V (St)

)
(26)

Similary for learning the action-value function qπ, the MC update rule can be written as:

Monte Carlo Policy Evaluation Update for learning Q ≈ qπ

Q(St, At)← Q(St, At) + α
(
Gt −Q(St, At)

)
(27)

The approximate action-value function Q also converges to the true action-value function
qπ if all state-action pairs are visited sufficiently often and a large number of episodes
are generated. This can be helped by ensuring that all state-action pairs have a non-zero
probability of being the starting pair (exploring starts).

4.1.2 Temporal Difference Learning

With MC-learning, we saw that it is possible to learn the value function without using
an MDP. The downside is that we still need to wait for episodes to terminate and can
only use MC-learning in episodic tasks.

In the previous section (Sec. 3), we saw that DP uses estimates of the value of
successor states for updating the value function (bootstrapping ⇒ make an estimate
based on another estimate), but for this we need an MDP.

Temporal Difference learning (TD-learning) combines the best of both the above meth-
ods by allowing bootstrapping without needing a model. This allows us to update the

30

value function based on the estimated values of successor states at every step, without
having to wait for an episode to terminate (which means that TD can also be used for
continuing tasks). TD-learning updates the value of a state S based on the immediate
next reward R and the estimated value of the successor state S ′ as shown below.

Temporal Difference Policy Evaluation Update for learning V ≈ Vπ

V (S)← V (S) + α
(
R + γV (S ′)− V (S)

)
(28)

Note: The underlined part of the equation shows the target, an estimate of the
expected return, and we update the value towards this target.

Using the above update step, we get the tabular algorithm for TD(0) or one-step TD
(since an update is made after taking every action):

Algorithm 6 Tabular TD(0), for estimating V ≈ vπ

Input: Policy π to be evaluated
Algorithm parameter: step size α ∈ (0, 1]
Initialize: V (s) ∈ R, ∀s ∈ S+ arbitrarily, except V (terminal) = 0
for each episode do

Initialize S
for each step of episode until S is terminal do
A← action taken by π for S
Take action A, observe reward R and next state S ′

V (S)← V (S) + α
(
R + γV (S ′)− V (S)

)
S ← S ′

end for
end for

For the action-value function too, there is a similar TD update.

Temporal Difference Policy Evaluation Update for learning Q ≈ qπ

Q(S,A)← Q(S,A) + α
(
R + γQ(S ′, A′)−Q(S,A)

)
(29)

Note: The underlined part of the equation shows the target, an estimate of the
expected return, and we update the value towards this target.

Now that we have looked at DP, MC and TD-learning, we can identify the major
differences between these methods by using the backup diagrams shown in Fig. 13.

4.1.3 Advantages of TD Learning

Similar to Fig. 13, Table 4 also shows the differences between DP, MC and TD. It can be
seen that TD can learn without a model of the environment and also without requiring
to play out an entire episode, and is therefore fully incremental:

31

(a) DP: Updates use E over all states/actions.
V (s)←

∑
a
π
(
a
∣∣ s) ∑

s′,r

p
(
s′, r

∣∣ s, a)[r + γV (s′)
]

(b) MC: Updates use true return at the end of the episode.
V (St)← V (St) + α

(
Gt − V (St)

)

(c) TD(0): Updates are done after a single step.
V (S)← V (S) + α

(
R+ γV (S′)− V (S)

)
Figure 13: Backup diagrams to illustrate the differences between Dynamic Programming (DP),
Monte Carlo learning (MC) and one-step Temporal Difference Learning (TD(0)). White circles
show the states, black dots represent actions and square boxes show the terminal states. The region
in red shows the part of the backup diagram considered by the respective methods for updating the
estimated value function V .

32

� TD can learn before knowing the final outcome ⇒ Less memory consumption, less
peak computation

� TD can learn without the final outcome ⇒ Also suitable for incomplete and non-
episodic tasks

DP MC TD

Bootstrapping yes no yes

Sampling no yes yes

Table 4: Differences between DP, MC and TD

Optional Information: TD(λ)

TD(0) considers only a single step for making an update. We can also consider n
steps where n = 1, 2, 3, ... This leads to methods known as TD(λ). TD(λ) methods
form a spectrum bewteen TD(0) where λ = 0, and MC-learning where λ = 1 (where
we consider all the steps till the end of the episode).

Redrawn from [http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/MC-TD.pdf]

4.2 Model-free Control

Model-free prediction enables us to evaluate how good a given policy is by estimating its
value function, but on its own, it is not enough to solve an RL problem. For this, we need
a way to gradually improve the policy that is being followed by the agent. Model-free
control helps us to do exactly that. It refers to the problem of finding the optimal value
function and policy without relying on an MDP.

33

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/MC-TD.pdf

On-policy vs Off-policy Learning

For the control problem, optimal policies can be learned in two ways:

� On-policy Learning: This refers to learning to improve a target policy π
from experience sampled from the same policy. In other words, the behavior
policy (policy used for generating samples) and the target policy (policy being
improved) are the same.

� Off-policy Learning: Here, we learn about a target policy π from experience
sampled from a different behavior policy µ. Here the agent learns about
the optimal policy while following a non-optimal exploratory policy. Once
training is complete, the agent knows the optimal policy and can utilize it.

4.2.1 SARSA

Earlier in Algo. 2, we saw that using the state-value function, the optimal policy can be
computed using the following equation:

π(s) = arg max
a

∑
s′,r

p(s′, r|s, a)[r + γV (s′)]

However, in order to perform the summation, we need to know the state transition
probabilities given by the function p. On the other hand, if we have the action-value
function Q, then we can find the best actions without needing an MDP:

π′(s) = arg max
a
Q(s, a)

Given the advantages of TD over MC, it is a natural idea to apply TD for estimating
the action-value function Q and then to use ε-greedy action selection for selecting the
next action by referring to the Q-values. As in TD(0) prediction, there is no need to wait
till the end of an episode. This leads us to the SARSA algorithm, which is an on-policy
TD-control algorithm.

Algorithm 7 SARSA (on-policy TD control) for estimating Q ≈ q∗

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Q(s, a), ∀s ∈ S+, a ∈ A arbitrarily, except
Q(terminal, ·) = 0
for each episode do

Initialize S
Choose A from S using policy derived from Q (eg. ε-greedy)
for each step of episode until S is terminal do

Take action A, observe reward R and next state S ′

Choose A′ from S ′ using policy derived from Q (eg. ε-greedy)
Q(S,A)← Q(S,A) + α

[
R + γQ(S ′, A′)−Q(S,A)

]
(Eq. 29)8

S ← S ′;A← A′

end for
end for

8Notice that for TD prediction (Eq. 29), the action was always chosen according to the policy π to be
evaluated, but here, since we are dealing with the control problem, the action is chosen only by looking
at Q. Gradually as Q ≈ q∗, this will lead to the agent performing optimal actions.

34

Figure 14: In SARSA, we continually estimate qπ for the behavior policy π, and at the same time
change π toward greediness with respect to qπ. Redrawn from [http://www0.cs.ucl.ac.uk/
staff/D.Silver/web/Teaching_files/control.pdf]

4.2.2 Q-Learning

Q-learning is an off-policy TD-control algorithm that is used for learning the action-
value function Q ≈ q∗. Here the behavior policy µ is different from the learned target
policy π. Q-learning directly approximates q∗, independent of the policy being followed.
As long as all state-action pairs continue to be updated, Q-learning converges to the
optimal action-value function q∗.

Algorithm 8 Q-learning (off-policy TD control) for estimating Q ≈ q∗

Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialize: Q(s, a), ∀s ∈ S+, a ∈ A arbitrarily, except
Q(terminal, ·) = 0
for each episode do

Initialize S
for each step of episode until S is terminal do

Choose A from S using policy derived from Q (eg. ε-greedy)
Take action A, observe reward R and next state S ′

Q(S,A)← Q(S,A) + α
[
R + γmax

a
Q(S ′, a)−Q(S,A)

]
S ← S ′

end for
end for

35

http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/control.pdf
http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/control.pdf

Exercise: Cliff Walking - Difference between SARSA and Q-learning
(example 6.6 from [10])

Consider the gridworld and its rules, as shown on the left. This is an undiscounted
episodic task with start and goal states (S and G respectively). Reward is -1 for
all transitions, except when the agent steps off the cliff, for which the reward is
-100. This also sends the agent to S. Actions have deterministic effects (left, right,
up and down). For this problem, both SARSA and Q-learning end up finding
solutions, as shown by the paths in the figure on the left.

� Why are the paths different?

� Why is the performance of Q-learning worse than SARSA (figure on the
right)?

� How can we get the same solution (path to goal) from both algorithms?

� If action selection is always performed greedily, is Q-learning exactly the same
algorithm as SARSA? Will they make exactly the same action selections and
weight updates?

36

5 Value Function Approximation

In Sec. 4, we have represented the state-value function vπ(s) and the action-value func-
tion qπ(s, a) in the form of tables V and Q respectively. The algorithms that we have
considered such as Monte Carlo prediction (Algo. 5), TD(0) learning (Algo. 6), SARSA
(Algo. 7) and Q-learning (Algo. 8) directly update the entries in the V or Q tables.

Although, for problems involving a small number of states and actions, using tables
to explicitly store the value of each state (or state-action pair) is feasible, for large state
and action spaces, the usage of table becomes prohibitively difficult. Consider the game
of Go, which has 10170 states. For this game, representing the value function as a table
would consume a huge amount of memory. Moreover, updating the entire table would be
very time consuming and expensive.

Problems in the real world often have state spaces which are much larger than games
such as Go. For problems in robotics (e.g. a mobile robot moving in a room), the states
are often continuous, resulting in an infinite state space. Clearly, for such problems,
tabular RL methods will not suffice. For these problems, value functions are represented
with the help of function approximators parameterized by some weight vector w (where
the size of w is much smaller than the number of states or state-action pairs). This results
in the following parameterized functions which approximate the true value functions:

v̂(s,w) ≈ vπ(s) (30)

q̂(s, a,w) ≈ qπ(s, a) (31)

With this representation, we do not need to store values of individual states. It is expected
that the parameterized value functions will be able to generalize sufficiently (e.g. values
of neighboring states are usually similar), even to states which have not been encountered
during training. The RL algorithms in this case update the parameter (weight) vector w
during training so that the value-function ends up approximating the true value of states.
It is possible to use any kind of function approximator for representing value functions,
but since we need an easy way to update w, it is common to use differentiable function
approximators such as linear combination of features or non-linear approximators such
as neural networks, for which w can be updated using gradient descent.

In this section, we extend the tabular model-free methods discussed in Sec. 4 to RL
problems with continuous state spaces but discrete action spaces. Later, in Sec. 6, we
will discuss how to handle continuous action spaces as well.

Figure 15: Value function approximation. (left) The state-value function, which outputs the value
of a given state. (middle) Action-value functions can be represented as a function that takes s and
a as input and gives the action-value for that pair. (right) A better way to represent q is have a
function which takes the state s as input and provides the action-values for the input state and all
possible actions. Here, only one forward pass is needed to calculate the action values of all actions.

37

5.1 Gradient Descent

Gradient descent gives us a way of adjusting the parameters w of the function approxi-
mator. If J(w) is a differentiable function of the parameter vector w, then the gradient
of J(w) is defined as:

∇wJ(w) =


∂J(w)

∂w1
...

∂J(w)

∂wn

 (32)

In order to find the local minimum of J(w), we need to adjust the parameters w in the
direction of the negative gradient. We do this by taking a small step (determined by the
learning rate or step size α) in the direction given by the negative gradient. Hence the
change in w is given by:

∆w = −1

2
α∇wJ(w) (33)

Here the constant 1
2

is used for mathematical convineance, as we shall see a little later.
For a more detailed discussion of gradient descent, refer to [2].

5.2 Approximating Value Functions with SGD

For representing state-value functions using function approximators, the goal is to find
a parameter vector w such that the mean-squared error between the approximate value
function v̂(s,w) and the true value function vπ(s) is minimized. Hence the loss function
can be written as:

J(w) = Eπ
[(
vπ(s)− v̂(s,w)

)2
]

(34)

Differentiating Eq. 34 with respect to w, using the chain rule and noting that vπ(s) is
independent of w, we get

∇wJ(w) = −2Eπ
[(
vπ(s)− v̂(s,w)

)
∇wv̂(s,w)

]
(35)

Plugging in the value of ∇wJ(w) in Eq. 33, we get

∆w = −1

2
α∇wJ(w)

= αEπ
[(
vπ(s)− v̂(s,w)

)
∇wv̂(s,w)

]
(36)

The expected update in Eq. 36 gives the full gradient update for w. Stochastic Gradi-
ent Descent (SGD), samples from this expectation (since SGD makes the update based
on a single observation) and hence the update for SGD can simply be written as

∆w = α
(
vπ(s)− v̂(s,w)

)
∇wv̂(s,w) (37)

Note that Eq. 34 is defined just the way a loss function would be written for a supervised
learning problem, where true labels are available for each data point. In RL, however
such true labels are not available. The problem we now have to solve is how we should
obtain values for vπ(s) so that we can utilize Eq. 37 (explained in Sec. 5.5).

38

Similarly, when approximating the action-value function using a function approximator
q̂(s, a,w) ≈ qπ(s, a), the objective function for the mean-squared error is written as

J(w) = Eπ
[(
qπ(s, a)− q̂(s, a,w)

)2
]

(38)

Taking the derivative of J(w) with respect to w using the chain rule, we get

∇wJ(w) = −2Eπ
[(
qπ(s, a)− q̂(s, a,w)

)
∇wq̂(s, a,w)

]
(39)

Similar to Eq. 36-37, stochastic gradient descent can be used to find the weight update
∆w which takes a step towards the local minimum of the objective function

∆w = −1

2
α∇wJ(w)

= α
(
qπ(s, a)− q̂(s, a,w)

)
∇wq̂(s, a,w) (40)

Here too, we assume that we know the true value of qπ(s, a). In Sec. 5.6 we will see how
to get around this problem.

Weight update using SGD

For the state-value function v̂(s,w) ≈ vπ(s)

∆w = α
(
vπ(s)− v̂(s,w)

)
∇wv̂(s,w)

For the action-value function q̂(s, a,w) ≈ qπ(s, a)

∆w = α
(
qπ(s, a)− q̂(s, a,w)

)
∇wq̂(s, a,w)

5.3 Linear Value Function Approximation

The simplest form of state-value function approximation is linear value function approx-
imation, where a state s is represented using a feature vector Φ such as

Φ(s) =


φ1(s)
φ2(s)

...
φn(s)

 (41)

The approximate state-value function v̂(s,w) can then be written as a linear combination
of the weight vector w and the feature vector Φ.

v̂(s,w) = Φ(s)Tw =
n∑
j=1

φj(s)wj (42)

Thus the loss function or objective in Eq. 34 can be written as

J(w) = Eπ
[(
vπ(s)− v̂(s,w)

)2
]

39

= Eπ
[(
vπ(s)−Φ(s)Tw

)2
]

(43)

Since ∇wv̂(s,w) = ∇wΦ(s)Tw = Φ(s) (gradient of the LHS of Eq. 46), the update rule
in Eq. 37 is particularly simple, and can be written as

∆w = α
(
vπ(s)− v̂(s,w)

)
∇wv̂(s,w)

= α
(
vπ(s)− v̂(s,w)

)
Φ(s) (44)

Thus, for linear value function approximation, the weight update ∆w in Eq. 47 can be
interpreted as the product of the step size [α], the prediction error [(vπ(s) − v̂(s,w))]
and the feature vector [Φ(s)]. When non-linear function approximators such as neural
networks are used, the general form of the weight update in Eq. 37 remains unchanged,
but in order to use it, we need to find the gradient ∇wv̂(s,w) for the neural network.

For the action-value function, a state-action pair is represented using a feature vector Φ.

Φ(s, a) =


φ1(s, a)
φ2(s, a)

...
φn(s, a)

 (45)

and the approximate action value function q̂(s, a,w) can be written as

q̂(s, a,w) = Φ(s, a)Tw =
n∑
j=1

φj(s, a)wj (46)

Consequently, the weight update is written as

∆w = α
(
qπ(s, a)− q̂(s, a,w)

)
∇wq̂(s, a,w)

= α
(
qπ(s, a)− q̂(s, a,w)

)
Φ(s, a) (47)

Weight update for Linear Function Approximation

For the state-value function v̂(s,w) ≈ vπ(s)

∆w = α
(
vπ(s)− v̂(s,w)

)
∇wv̂(s,w)

= α
(
vπ(s)− v̂(s,w)

)
Φ(s)

For the action-value function q̂(s, a,w) ≈ qπ(s, a)

∆w = α
(
qπ(s, a)− q̂(s, a,w)

)
∇wq̂(s, a,w)

= α
(
qπ(s, a)− q̂(s, a,w)

)
Φ(s, a)

40

5.4 Features for Linear Methods

Different kinds of features for linear methods can be constructed 9

Polynomials

States of many systems are expressed as numbers (e.g. position and velocity for the
pole balancing task). If a 2-dimensional state s = [s1, s2]T is directly used as-is with a
linear method, the state representation fails to encode the iteraction between different
dimensions of the state, which may be useful for speeding the learning process. Instead
we can use a 4-dimensional feature vector Φ(s) = [1, s1, s2, s1s2]T which captures the
interaction between s1 and s2. In general, if state s has k dimensions, s1, s2, ..., sk with
each si ∈ R , each order-n polynomial-basis feature can be written as

φi(s) =
k∏
j=1

s
ci,j
j (48)

where each ci,j is an integer in the set {0, 1, ..., n} for n ≥ 0. For a state with k dimensions
these φi(s) features make up the feature vector Φ which is has (n+ 1)k different features.

Coarse Coding

For tasks, in which the state state set is a continuous two dimenisonal place, any position
can be represented using features corresponding to circles in state space, as shown in Fig.
16 (left). Each circle represents a binary feature which is 1 if the position is inside the
circle and 0 otherwise. The features for all the circles together form the feature vector
Φ(s) for a given state s.

Tile Coding

In Tile Coding 16 (right), the state space is divided into partitions. Each partition is
called a tiling and each element (grid cell) of a tiling is called a tile. Different tilings
are partly offset from each other. For a particular position in the state space, only the
features for those tiles which contain the position will be 1 and all other features will be
0, leading to a binary feature vector (which has one feature for each tile in each tiling).

Figure 16: (left) Coarse coding (right) Tile coding

9For further details see [10] pg. 210.

41

Radial Basis Functions

Radial Basis Functions (RBFs) can be considered a generalization of coarse coding to the
continuous domain, where instead of binary features, the features contain real numbers
in the range [0,1]. Each feature φi is a Gaussian, dependent on the state s, the feature’s
center ci, and the feature’s width σi.

φi(s) = exp
(
− ||s− ci||

2

2σ2
i

)
(49)

Exercise: Polynomial Features

Recall:

φi(s) =
k∏
j=1

s
ci,j
j where s = [s1, s2, ..., sk]

T , ci,j ∈ {0, 1, ..., n}

for n ≥ 0. For k dimensions, Φ has (n+ 1)k different features.

Let s = [s1, s2]T , (k = 2) and let n = 2. What is the polynomial feature vector Φ?

5.5 Algorithms for Prediction

While formulating Eq. 34-47, we have assumed that the true state-value vπ(s) is known.
However, in RL, there is no supervisor and so there is no direct way to know this value.
In order to circumvent this issue, we substitute a target for vπ(s) instead of using the
true value. We do this by using either the Monte Carlo target (Eq. 26) or the Temporal
Difference target (Eq. 28).

Weight Update for MC and TD prediction

For MC, the target us the return Gt. Thus the weight update is

∆w = α
(
Gt − v̂(St,w)

)
∇wv̂(St,w) (50)

For TD(0), the target is the TD target Rt+1 + γv̂(St+1,w). Hence,

∆w = α
(
Rt+1 + γv̂(St+1,w)− v̂(St,w)

)
∇wv̂(St,w) (51)

We can directly use Eq. 50 to modify Algo. 5 to obtain the gradient MC algorithm for
estimating v̂ ≈ vπ.

42

Algorithm 9 Gradient MC Prediction, for estimating v̂ ≈ vπ

Input:
Policy π to be evaluated
Algorithm parameter: step size α > 0
A differentiable value function v̂ : S × Rd → R

Initialize
Value-function weight vector w ∈ Rd arbitrarily (e.g. w = 0)

repeat
Generate an episode using π: S0, A0, R1, S1, A1, R2, ..., ST−1, AT−1, RT

for each step of episode, t = 0, 1, ..., T − 1 do

w = w + α
(
Gt − v̂(St,w)

)
∇wv̂(St,w)

end for
until forever

Since the MC update uses the actual return Gt (which is an unbiased estimate of vπ(St),
gradient-descent version of MC prediction is guaranteed to converge to a locally optimal
solution ([10] pg. 202).

Similarly, we can modify the algorithm for tabular TD(0) (Algo. 6) by using function
approximation as shown in Algo. 10.

Algorithm 10 Semi-gradient TD(0) Prediction, for estimating v̂ ≈ vπ

Input:
Policy π to be evaluated
Algorithm parameter: step size α > 0
A differentiable value function v̂ : S+ × Rd → R such that v̂(terminal) = 0

Initialize
Value-function weight vector w ∈ Rd arbitrarily (e.g. w = [0, ..., 0]T)

repeat
Initialize S
for each step of episode until S is terminal do

Choose A ∼ π(·|S)
Take action A, observe R, S ′

w = w + α
(
R + γv̂(S ′,w)− v̂(S,w)

)
∇wv̂(S,w)

S ← S ′

end for
until forever

However, for the gradient-descent version of TD prediction, the situation is a bit
more complicated. Recall that while deriving Eq. 35, we noted that the target vπ was
independent of the weight vector w. But for TD, we bootstrap using the TD target
Rt+1 + γv̂(St+1,w) (Eq. 51) which depends on the current value of w.

This implies that the TD target is a biased estimate of the true return and will not
result in a true gradient-descent method. For TD, we take ignore the effect of w on the
target. This results in bootstrapping methods such as TD including only a part of the true
gradient and accordingly, they are called semi-gradient methods. Although, bootstrapping

43

methods offer less robust convergence guarantees, they still offer advantages such as being
applicable for both continuous and episodic tasks and enabling faster learning. Hence in
many instances, TD methods, such as Algo. 10 are preferable.

5.6 Algorithms for Control

For the control problem using function approximation, we use the action-value function
and follow the same general process as tabular methods for control. The difference is that
for function approximation, the weights w are updated instead of entries in the table, as
shown in Fig. 17.

Figure 17: Function approximation for control. The policy evaluation step (top) uses a parameterized
representation of the action value function q̂(·, ·,w) ≈ qπ. The policy improvement step (bottom)
uses an ε-greedy action selection to improve the policy implied by the current action-value function.

Weight Update for TD control

For TD(0), the target is the TD target Rt+1 + γq̂(St+1, At+1,w). Hence,

∆w = α
(
Rt+1 + γq̂(St+1, At+1,w)− q̂(St, At,w)

)
∇wq̂(St, At,w) (52)

Using Eq. 52, we get the semi-gradient SARSA algorithm shown in Algo. 11 (by modi-
fying the SARSA algorithm in Algo. 7).

44

Algorithm 11 Episodic Semi-gradient Sarsa for Estimating q̂ ≈ q∗

Input: A differentiable action-value function parameterization q̂ : S ×A× Rd → R
Algorithm parameters: step size α ∈ (0, 1], small ε > 0
Initialize value function weights w ∈ Rd arbitrarily (e.g. w = [0, ..., 0]T)
for each episode do

Initialize S
Choose A from S using policy derived from q̂ (eg. ε-greedy)
for each step of episode do

Take action A, observe reward R and next state S ′

if S ′ is terminal then
w← w + α

(
R− q̂(S,A,w)

)
∇wq̂(S,A,w)

Go to next episode
end if
Choose A′ as a function of q̂(S ′, ·,w) (eg. ε-greedy)
w← w + α

(
R + γq̂(S ′, A′,w)− q̂(S,A,w)

)
∇wq̂(S,A,w)

S ← S ′;A← A′

end for
end for

5.7 Convergence Properties and the Deadly Triad

When function approximation is used, we typically have to settle for a local optimum.
The limited expressivity of the parametric value function restricts the scope of learnable
value functions and thus policies. Due to q̂ being approximate, convergence guarantees
are weaker than in the case of tabular methods. Particularly, the risk of divergence of the
learned value function arises if we combine three things known as the Deadly Triad :

� Function Approximation - Using a parametric function to significantly generalize
from a large number of examples.

� Bootstrapping - Learning value estimates from other value estimates.

� Off-policy Learning - Learning about a policy from data not due to that policy.

The following table shows the convergence properties of some control algorithms using
different representations of the value functions.

Algorithm Tabular Linear Func. Approx. Non-linear Func. Approx.

SARSA Yes Chatters around optimal No

Q-Learning Yes No No

45

6 Policy Gradients

In Sec. 5, we have approximated the state-value or the action-value value function using
parameters w

v̂(s,w) ≈ vπ(s)

q̂(s, a,w) ≈ qπ(s, a)

For solving the control problem, we needed a policy which was generated directly from
the value function (e.g. using ε-greedy action selection).

Instead of using an implicit policy, now we will directly parameterize the policy itself
using parameters θ, and then find a way to change θ so that we can compute the best
possible policy. The parameterized policy is represented as

πθ(s, a) = P
[
a|s,θ

]
(53)

We will look at methods which optimize θ directly without needing to go through value-
functions.

6.1 Advantages of Policy-based RL

Policy-based RL methods have some advantages when compared to value-based methods:

� Better Convergence: For a policy approximated with a continuous function ap-
proximator, making small changes to the policy parameters θ will result in small
changes in the actions to be taken in a given state. This results in better conver-
gence properties than for value function approximation where a small change in the
parameters w can result in a large change in the action to be taken (using ε-greedy
action selection).

� Continuous action spaces: For the value-based methods, the action is chosen by
looking at the action-values of different actions in a given state and then choosing
(greedily or ε-greedily) the action which has the highest value. This is only possible
if actions are discrete and finite. When the policy is directly parameterized, it is
possible to generate continuous actions, and thus policy-based methods may be
applicable to a greater range of problems.

� Simpler to learn Policy directly: For some problems, estimating the value
function can be a harder problem than directly learning the policy. For example,
when an RL agent learns to play the game of Pong10 directly by looking at pixels
on the screen, it may be more difficult to estimate the future score (return) for a
particular state (screen frame) than to figure out whether the paddle should move
left or right based on the position of the ball.

6.2 Policy Optimization

For a given parameterized policy πθ, our goal is to find the best possible θ so that the
agent can collect the maximum amount of rewards. In order to find the best policy, we
need a way to determine the quality of the policy πθ. This is given by the objective
function.

10https://en.wikipedia.org/wiki/Pong

46

https://en.wikipedia.org/wiki/Pong

Policy Objective Function for Episodic Tasks

For episodic tasks, we can use the value of the start state s0, which gives the
expected return when starting in s0 and thereafter following policy πθ

J(θ) = vπθ(s0) (54)

Policy-based RL is an optimization problem, where our task is to find a θ that maximizes
the objective function J(θ). Policy gradient algorithms search for a local maximum in
J(θ) by ascending the gradient of the policy with respect to the parameters θ. The
change in θ is obtained by taking a small step (determined by the step size α) in the
direction of the gradient of the objective function as shown below:

∆θ = α∇θJ(θ) (55)

Here, the gradient of the objective function is given by

∇θJ(θ) =


∂J(θ)

∂θ1
...

∂J(θ)

∂θn

 (56)

In Sec. 5, the objective function we used was the squared error between the target value
and the actual value (Eq. 34 and 38) and so we performed gradient descent to minimize
this error. Here, our goal is to maximize performance and so we do gradient ascent
instead.

6.3 Policy Gradient with Finite Differences

The simplest way of estimating the policy gradient is by using finite differences [6]. A
given n-dimensional policy parameter vector θh is varied n times (once in each dimension)
to produce increments ∆θi, i = 1, .., n. For each of these increments, a policy variation
J(θh + ∆θi) is produced. Rollouts are performed for estimating ∆Ĵi = J(θh + ∆θi) −
J(θh). This results in the data points [∆θ1,∆Ĵ1], ..., [∆θn,∆Ĵn] over which regression
can be performed to compute an estimate of the policy gradient.

Algorithm 12 Policy Gradient estimation using Finite Differences

Input: Policy parameterization instance θh (n-dimensional vector)
for i = 1 to n do

Generate policy variation ∆θi by perturbing θh in dimension i
Estimate Ĵi ≈ J(θh + ∆θi) =

∑H
k=0 γ

kRk from roll-out

Estimate Ĵref = J(θh) from roll-out

Compute ∆Ĵi ≈ J(θh + ∆θi)− Ĵref
end for
Return the policy gradient estimate

gFD ≈ ∇θJ |θ=θh
=
(
∆θT∆θ

)−1
∆θT∆Ĵ

where ∆θ = [∆θ1, ...,∆θn]T and ∆Ĵ = [∆Ĵ1, ...,∆Ĵn]T

(performing regression over the data points [∆θ1,∆Ĵ1], ..., [∆θn,∆Ĵn])

47

Using finite differences to compute the policy gradient is a naive numerical approach
and it can be noisy and inefficient, mainly because we need to perform rollouts for each
dimension of the policy parameter vector. For a high-dimensional parameterization like
a neural network, this is simply not possible. However, in some situations (such as [3])
this approach can be effective.

6.4 Score Function and Liklihood Ratio

In order to compute the policy gradient analytically, we assume that the policy πθ is
differentiable whenever it is non-zero (whenever actions are picked) and that we know
the gradient of our policy ∇θπθ(s, a) (since we construct the policy function such as a
softmax policy or a neural network ourselves and we can derive the gradient for this
function). Liklihood Ratios explore the following identity:

∇θπθ(s, a) = πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
(Mutipying and dividing by πθ(s, a))

= πθ(s, a)∇θ lnπθ(s, a) (since ∇θ ln(z) =
1

z
∇θz) (57)

The term ∇θ ln πθ(s, a) is known as the score function which tells us how to adjust our
policy so that the liklihood of choosing good actions is increased.

48

Score Function for Policies with Discrete Actions

For discrete actions, we can use a linear combination of features for representing
the weightage of each action, such as Φ(s, a)Tθ ∈ R, where Φ(s, a) is the feature
vector and θ is the parameter vector of our policy. The weightage of the actions
can then be expressed as probabilities by using the softmax function. Hence, our
policy will be

πθ(s, a) =
eΦ(s,a)Tθ∑
b

eΦ(s,b)Tθ
(58)

where the denominator in the RHS sums over all actions and normalizes the weights
for actions into probabilities ∈ [0, 1]. For this case, the score function is

∇θ lnπθ(s, a) = ∇θ ln
eΦ(s,a)Tθ∑
b

eΦ(s,b)Tθ

= ∇θ

(
ln eΦ(s,a)Tθ − ln

∑
b

eΦ(s,b)Tθ
)

= ∇θ ln eΦ(s,a)Tθ −∇θ ln
∑
b

eΦ(s,b)Tθ

= ∇θΦ(s, a)Tθ−∇θ ln
∑
b

eΦ(s,b)Tθ

= Φ(s, a)−∇θ ln
∑
b

eΦ(s,b)Tθ

= Φ(s, a)−
(1∑

b

eΦ(s,b)Tθ
∇θ

∑
b

eΦ(s,b)Tθ
)

(using chain rule)

= Φ(s, a)−
(1∑

b

eΦ(s,b)Tθ

∑
b

∇θe
Φ(s,b)Tθ

)
(taking gradient inside the sum)

= Φ(s, a)−
(1∑

b

eΦ(s,b)Tθ

∑
b

eΦ(s,b)Tθ∇θΦ(s, b)Tθ
)

(chain rule again)

= Φ(s, a)−
(1∑

b

eΦ(s,b)Tθ

∑
b

eΦ(s,b)TθΦ(s, b)
)

= Φ(s, a)−
(∑

b

eΦ(s,b)Tθ∑
b

eΦ(s,b)Tθ
Φ(s, b)

)
(rearranging the summations)

= Φ(s, a)−
(∑

b

πθ(s, b)Φ(s, b)
)

(using definition of πθ(s, b))

= Φ(s, a)− Eπθ
[
Φ(s, ·)

]
(since πθ(s, b) is the probability of action b)

(59)

Note: This derivation is based on [9].

49

Score Function for Policies with Continuous Actions

When we want our parameterized policy function to output continuous actions in-
stead of discrete actions, we can represent the policy function using a Gaussian
function N (µ(s,θ), σ2), where the mean µ is a function parameterized by θ (ob-
tained by a linear combination of state features µ(s,θ) = Φ(s)Tθ) and the variance
σ is a constant (for a more complicated case, σ can also be a parameterized func-
tion). Continuous actions a ∈ R can then sampled from this Gaussian distribution
a ∼ N . Therefore, the policy function (probability of choosing a continuous action
a in state s) can be written as:

πθ(s, a) =
1

σ
√

2π
exp
(
−
(
a− µ(s,θ)

)2

2σ2

)
(60)

The score function for this Gaussian policy is

∇θ ln πθ(s, a) = ∇θ ln
1

σ
√

2π
exp
(
−
(
a− µ(s,θ)

)2

2σ2

)
= ∇θ ln exp

(
−
(
a− µ(s,θ)

)2

2σ2

)
−∇θ lnσ

√
2π

= ∇θ

(
−
(
a− µ(s,θ)

)2

2σ2

)
= − 1

2σ2
· 2
(
a− µ(s,θ)

)
· −∇θµ(s,θ) (Using the chain rule)

=

(
a− Φ(s)Tθ

)
Φ(s)

σ2
(Since µ(s,θ) = Φ(s)Tθ) (61)

6.5 Policy Gradient Theorem

The Policy Gradient Theorem expresses the policy gradient in terms of the score function
lnπθ(s, a). It states that for any differentiable policy πθ(s, a), the policy gradient is

∇θJ(θ) = Eπθ
[
∇θ ln πθ(s, a) · qπθ(s, a)

]
(62)

The Monte Carlo Policy Gradient algorithm (REINFORCE) samples episode trajecto-
ries and updates the policy function parameters by stochastic gradient ascent (thereby
eliminiating the expectation). It uses the return Gt as an unbiased estimate of qπθ(s, a).

50

Algorithm 13 Monte Carlo Policy Gradient Control (REINFORCE) for π∗

Input: A differentiable policy parameterization πθ(s, a)
Algorithm parameter: step size α > 0
Initialize policy parameter θ ∈ Rd (e.g. to 0)
for each episode do

Generate an episode S0, A0, R1, ..., ST−1, AT−1, RT by following πθ(·, ·)
for each step of episode t = 0, 1, ..., T − 1 do

G←
T∑

k=t+1

γk−t−1Rk

θ← θ + α∇θ lnπθ(St, At) · γTG
end for

end for

If we use linear combination of features as the parameterization of our poicy function and
use either a softmax policy or a Gaussian policy, we can directly use Eq. 59 (softmax) or
Eq. 61 (Gaussian) to substitute ∇θ ln πθ(St, At) in Algo. 13.

6.6 Actor-Critic Methods

Monte Carlo Policy Gradient (REINFORCE) using only πθ(a|s) has a high variance.
Actor-Critic methods use the value function as a critic to reduce this variance.

Algorithm 14 One-step Actor–Critic

Input: a differentiable policy parameterization π(a|s,θ)
Input: a differentiable state-value function parameterization v̂(s,w)
Parameters: step sizes αθ > 0, αw > 0
Initialize policy parameter θ ∈ Rd′ and state-value weights w ∈ Rd (e.g., to 0)
for each episode do

Initialize S (first state of episode)
I ← 1
while S is not terminal do
A ∼ π(·|s,θ)
Take action A, observe S ′, R
δ ← R + γv̂(S ′,w)− v̂(S,w) (if S ′ is terminal, then v̂(S ′,w)

.
= 0)

w← w + αwδ∇v̂(S,w)
θ← θ + αθIδ∇ ln π(A|S,θ)
I ← γI
S ← S ′

end while
end for

51

REINFORCE with Baseline vs Actor-Critic

• What is the difference between using REINFORCE with Baseline and Actor-Critic?

• What is the effect of having this difference?

Update Equations for REINFORCE with Baseline
δ ← G− v̂(St,w)
w← w + αwδ∇wv̂(St,w)
θ← θ + αθδ∇θ log π(At|St,θ)

Update Equations for Actor-Critic
δ ← R+ γv̂(S′,w)− v̂(S,w)
w← w + αwδ∇v̂(S,w)
θ← θ + αθIδ∇ lnπ(A|S,θ)

52

7 Summary

Markov Decision Process

Term Description Expression

MDP
Framework defining agent-
environment interaction

〈S,A,P, r, γ〉 where

• S is a finite set of states.

• A is a finite set of actions.

• P is a state transition prob. func.
P(s′|s, a) = P[St+1 = s′|St =
s,At = a]

• r is a reward function

r(s, a, s′) = E[Rt+1|St = s,At =
a, St+1 = s′]

• γ is a discount factor, 0 ≤ γ ≤ 1

Markov
Property

Current state includes all in-
formation about the past

-

Reward
Scalar quantity for evaluating
the agent’s action.

Rt ∈ R

Return
Discounted sum of future re-
wards.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =

∞∑
k=0

γkRt+k+1

= Rt+1 + γGt+1

Goal Maximize expected Return maximize(E[Gt]) at each t

Policy
Mapping from states to prob-
abilities of actions.

π(a|s) = P[At = a|St = s]

State-value
Function

Expected Return when
starting in s and following π
thereafter.

vπ(s) = Eπ[Gt|St = s]

= Eπ[
∞∑
k=0

γkRt+k+1|St = s] ∀s ∈ S

Action-value
Function

Expected Return when
starting in s, taking action a
and following π thereafter.

qπ(s, a) = Eπ[Gt|St = s,At = a]

= Eπ[

∞∑
k=0

γkRt+k+1|St = s,At = a]

∀s ∈ S, a ∈ A

53

Bellman Equations

Name Backup Diagram Equation

Bellman Expect.
Eq. for vπ

vπ(s) = Eπ
[
Rt+1 + γvπ(s′)

∣∣∣ St = s
]

=
∑
a

π
(
a
∣∣ s)∑

s′,r

p
(
s′, r

∣∣ s, a)[r + γvπ(s′)
]

Bellman Optimal-
ity Eq. for v∗

v∗(s) = max
a

Eπ∗
[
Rt+1 + γv∗(St+1)

∣∣ St = s,At = a
]

= max
a

∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γv∗(s
′)
]

Bellman Expect.
Eq. for qπ

qπ(s, a) = Eπ
[
Rt+1 + γqπ(s′, a′)

∣∣∣ St = s,At = a
]

=
∑
s′

p
(
s′
∣∣ s, a)[r + γ

∑
a′

π(a′|s′)qπ(s′, a′)
]

Bellman Optimal-
ity Eq. for q∗

q∗(s, a) = Eπ∗
[
Rt+1 + γmax

a′
q∗(St+1, a

′)
∣∣ St = s,At = a

]
=
∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γmax
a′

q∗(s
′, a′)

]

Dynamic Programming

Prediction: How good is a policy?

� Input MDP 〈S,A,P, r, γ〉 and the policy π

� Output Value function vπ

Control: What is the best policy?

� Input MDP 〈S,A,P, r, γ〉
� Output Optimal value function v∗ and the optimal policy π∗

DP Method Algorithm Equation

Policy Evaluation Algo. 1 V (s)←
∑
a
π
(
a
∣∣ s)∑

s′,r
p
(
s′, r

∣∣ s, a)[r + γV (s′)
]

Policy Iteration Algo. 2
Policy Evaluation +
π(s) = arg max

a

∑
s′,r

p(s′, r|s, a)[r + γV (s′)]

Value Iteration Algo. 3 V (s)← max
a

∑
s′,r

p
(
s′, r

∣∣ s, a)[r + γV (s′)
]

54

Model-free Prediction

MF Method Algorithm Equation

Monte Carlo Algo. 5 V (St)← V (St) + α
(
Gt − V (St)

)
Temporal
Difference (0)

Algo. 6 V (S)← V (S) + α
(
R+ γV (S′)− V (S)

)

Figure 18: DP: Updates use E.

V (s)←
∑
a
π
(
a
∣∣ s)∑

s′,r
p
(
s′, r

∣∣ s, a)[r + γV (s′)
]

Figure 19: MC: Updates use true return.

V (St)← V (St) + α
(
Gt − V (St)

)

Figure 20: TD(0): Updates are done after a single step.

V (S)← V (S) + α
(
R+ γV (S′)− V (S)

)

55

Model-free Control

MF Method Algorithm Equation

SARSA Algo. 7 Q(S,A)← Q(S,A) + α
[
R+ γQ(S′, A′)−Q(S,A)

]
Q-Learning Algo. 8 Q(S,A)← Q(S,A) +α

[
R+γmax

a
Q(S′, a)−Q(S,A)

]

SARSA Q-Learning

Value Function Approximation

VFA Method Algorithm Equation

Gradient MC Pre-
diction

Algo. 9 ∆w = α
(
Gt − v̂(St,w)

)
∇wv̂(St,w)

Semi-gradient
TD(0) Prediction

Algo. 10 ∆w = α
(
Rt+1 + γv̂(St+1,w)− v̂(St,w)

)
∇wv̂(St,w)

Semi-gradient
SARSA

Algo. 11 ∆w = α
(
Rt+1 + γq̂(St+1, At+1,w)− q̂(St, At,w)

)
∇wq̂(St, At,w)

Policy Gradients

PG Method Algorithm Equation

REINFORCE
(MC PG Control)

Algo. 13 ∆θ = α∇θ lnπθ(St, At) · γTG

56

8 Learning Resources

(To be updated)

57

9 References

[1] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Autonomous helicopter aerobat-
ics through apprenticeship learning. The International Journal of Robotics Research,
29(13):1608–1639, 2010.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[3] Nate Kohl and Peter Stone. Policy gradient reinforcement learning for fast quadrupedal
locomotion. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation, May 2004.

[4] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[5] OpenAI, :, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob
McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,
Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech
Zaremba. Learning dexterous in-hand manipulation, 2018. arXiv:1808.00177.

[6] J. Peters. Policy gradient methods. Scholarpedia, 5(11):3698, 2010. revision #137199.
doi:10.4249/scholarpedia.3698.

[7] J. Peters, J. Kober, K. Muelling, D. Nguyen-Tuong, and O. Kroemer. Towards motor
skill learning for robotics. In Proceedings of the International Symposium on Robotics
Research (ISRR), Invited Paper, 2009. URL: http://www-clmc.usc.edu/publications/
P/Peters_ISRR2009.pdf.

[8] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

[9] David Silver and Gerald Tesauro. Monte-carlo simulation balancing. In Proceedings of the
26th Annual International Conference on Machine Learning, pages 945–952. ACM, 2009.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. The
MIT Press, 2nd edition, 2018. URL: https://mitpress.mit.edu/books/

reinforcement-learning-second-edition.

58

http://arxiv.org/abs/1808.00177
https://doi.org/10.4249/scholarpedia.3698
http://www-clmc.usc.edu/publications/P/Peters_ISRR2009.pdf
http://www-clmc.usc.edu/publications/P/Peters_ISRR2009.pdf
https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://mitpress.mit.edu/books/reinforcement-learning-second-edition

	Introduction
	A Motivating Example
	A Simplified View of RL
	Origins or Reinforcement Learning
	Machine Learning Paradigms
	Elements of Reinforcement Learning
	Categories of Reinforcement Learning Algorithms
	Notable Applications of Reinforcement Learning

	Markov Decision Process
	Definition
	Goals and Rewards
	Episodes and Returns
	Unified Notation for Episodic and Continuing Tasks
	Value Functions and Policies
	Bellman Expectation Equations
	Optimal Policies and Value Functions
	Bellman Optimality Equations

	Dynamic Programming
	Policy Evaluation
	Policy Improvement
	Policy Iteration
	Value Iteration

	Model-free Prediction and Control
	Model-free Prediction
	Monte Carlo Learning
	Temporal Difference Learning
	Advantages of TD Learning

	Model-free Control
	SARSA
	Q-Learning

	Value Function Approximation
	Gradient Descent
	Approximating Value Functions with SGD
	Linear Value Function Approximation
	Features for Linear Methods
	Algorithms for Prediction
	Algorithms for Control
	Convergence Properties and the Deadly Triad

	Policy Gradients
	Advantages of Policy-based RL
	Policy Optimization
	Policy Gradient with Finite Differences
	Score Function and Liklihood Ratio
	Policy Gradient Theorem
	Actor-Critic Methods

	Summary
	Learning Resources
	References

