Derivations for Linear Regression

Sayantan Auddy

This document contains derivations for linear regression with and without regularization. All the necessary linear
algebra proofs have been explained in the Appendix. Refer to the links in the footnotes for more information about
matrix calculus.

1 Linear Regression||

We have a design matriz ® € R"*™ (e.g. constructed using n data points and for a m—dimensional polynomial).
We want to find a weight vector w € R” such that the following is true where t is the vector of labels.
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Thus, we need to minimize the differences between our predicted label vector (2w) and our target label vector t.
The vector containing the difference for each data point can be computed as

((I)’U})l — tl

((I)’LU)Q — t2
dw -t = .

(Pw),, — tn

The squared error is a scalar number which gives the cumulative error over all the n data points. This can be
obtained by adding the squared errors for each prediction. In other words,

E(w) = %(((@w)l - t1)2 + ((Pw)2 — t2)2 + -+ ((Pw), — tn)2) (% is used for mathematical convenience)
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So, now we need to find w such that E(w) is minimized. This is done by computing the gradient of E(w) with
respect to w and setting it to 0. Thus,

(®w),, — 1)

w = arg min E(w)

1This is based on http://www.haija.org/derivation_lin_regression.pdf, which contains a more condensed form of this proof.


http://www.haija.org/derivation_lin_regression.pdf
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- %vw (W (@T@)w) - V. (t7@w) + %vw (t7¢) =0

- %2(@%)“{ - (tTi»)T +0=0

(for the first part note that (®7®) is a symmetric matrix (see section, and
using this fact along with the rule in section gives us Vyw! (®T®)w =
2(®7 ®)w; for the second part see section the third part does not depend
on w and so its gradient w.r.t. w is 0)

=(®"®)w-®"t=0
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=>w= (‘I'T@)_ltl’Tt (multiplying both sides by (<I>T<I>)_1)

2 Linear Regression with Regularization

In linear regression without regularization, our error function was defined as
1 T
E(w) = B <<I>W - t) (<I>W — t)

In order to minimize overfitting, we want to regularize the linear regression by introducing a penalty on the weights
(such that low values of weights are preferred). We do this by modifying the error function as given below

(note that the sum of squared

1 T A weights is given by w/w = w? +

E(w) = 5((1)“, - t) (fﬁw - t) toww w? + ... + w2, and ) is the regu-
larization coefficient)

Then, similar to section [1} we compute the gradient of the error and set it to 0.

w = arg min E(w)
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= VW(%((I’W — t)T(<I>W — t)) + vw(%WTW> =0

= Vo E(w) = vw(

- (((I)T‘I>)w — <I’Tt> + ng (wTw) =0

(the first part comes from the derivation in section
= ((@"®)w — @7t) + Aw =0

(since VywTw = 2w); see section
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A Appendix: Useful Matrix Calculus ruleﬂ

A1l Rulel
VibT'x =b (1)
where x and b are vectors of size n (x € R™ and b € R")
Proof.
Let f(x) =b'x = Zbixi
i=1
of(x) 0
S0 8xk 8xk ; v k
aizl Z bix; = b
w by
. 323 biwi = by bs
Therefore Vxb* x = i=1 =|.|=b
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A.2 Rule 2
VXXTAX = 2Ax (2)

where x is a vector of size n (x € R") and A is a symmetric matrix of size n X n (A € R™*")
Proof.

Let f(x) = xT Ax
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2Some of the proofs are based on http://cs229.stanford.edu/section/cs229-1inalg.pdf| but have been simplified further by
showing the matrix elements where ever possible. Useful sources for matrix calculus are https://atmos.washington.edu/~dennis/
MatrixCalculus.pdf and of course https://en.wikipedia.org/wiki/Matrix_calculus.


http://cs229.stanford.edu/section/cs229-linalg.pdf
https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
https://en.wikipedia.org/wiki/Matrix_calculus
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Separating f(x) into 4 parts: (i #k,j #k),(i #k,j=k),(i=k,j#k),(i=k,j=k)
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A.3 Rule 3
For any matrix ® € R™*", the matrix ®7® is a symmetric matrix.
Proof. For any matrix A € R"*™ and B € R™*" (AB)T = BTAT
(®7®)" = T (®")7T (taking A = &7 and B = ®)
= ®7® (since (@7)T = @)

Since the matrix (<I>T<I') is equal to its transpose, it is symmetric.

A.4 Rule4
Vw (WTW) = 2w (where w € R™)
Proof.
o ]
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Vw (WTW) = : = 2w
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| 2w, |
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