
Derivations for Backpropagation

Sayantan Auddy

This document contains derivations for backpropagation for a fully connected neural network with 1 hidden layer.

Figure 1: Fully connected neural network with 1 hidden layer. Here, the dimension of each data point is D = 2 and there are m
data points in a batch. There are h units in the hidden layer.

Let us consider the neural network as a graph. We are passing in data X ∈ Rm×D into the network which will
perform binary classification. Here m is the number of data points in X and D is the dimension of each data point.
Under these assumptions, the forward propagation step computes the following:

Z1 = XWT
1 + b1 (1)

A1 = g1(Z1) (where g1 is the activation function of layer 1) (2)

Z2 = A1W
T
2 + b2 (3)

A2 = g2(Z2) (where g2 is the activation function of the output layer) (4)

The operations of the forward pass are shown as a graph below:

Z1 = XWT
1 + b1

X,W1, b1

A1 = g1(Z1) Z2 = A1W
T
2 + b2

W2, b2

A2 = g2(Z2) L(A2, Y)

Figure 2: Forward propagation graph.

1

It makes sense at this point to be aware of the dimensions of the various variables involved. These are specified
below:

X ∈ Rm×D

W1 ∈ Rh×D, b1 ∈ R1×h

Z1 ∈ Rm×h, A1 ∈ Rm×h

W2 ∈ R1×h, b2 ∈ R1×1

Z2 ∈ Rm×1, A2 ∈ Rm×1

The loss L is given by

L(A2, Y) =
1

m

m∑
i=1

(
− Y (i) log(A

(i)
2)− (1− Y (i)) log(1−A(i)

2)
)

(5)

We need the final loss to be a scalar value and so we compress the loss by taking the average the term
(
−

Y (i) log(A
(i)
2)− (1−Y (i)) log(1−A(i)

2)
)

for each data point i. However, for computing the derivatives of the various
terms shown in Fig. 2, we will consider the uncompressed loss:

L(A2, Y) = −Y log(A2)− (1− Y) log(1−A2) (6)

Now, let’s derive the gradients for the various elements in the graph shown in Fig. 2. In the code, we use the

shorthand notation dz2 to mean
∂L
∂z2

and so on. Throughout the following derivations, we will be using the chain

rule for differentiation. The forward and backward operations (in red) are summarized together in Fig. 3.

Z1 = XWT
1 + b1

X,W1, b1 dW1, db1

A1 = g1(Z1) Z2 = A1W
T
2 + b2

W2, b2 dW2, db2

A2 = g2(Z2) L(A2, Y)

Z1

dA1

dZ1

A1

dZ2

dZ2

Z2

dA2

A2

Figure 3: Forward and backward propagation.

• Computing dA2 =
∂L
∂A2

(note that dA2 ∈ Rm×1)

L(A2, Y) = −Y log(A2)− (1− Y) log(1−A2)

Hence
∂L
∂A2

=
− Y
A2

+
(1− Y)

(1−A2)
(7)

• Computing dZ2 =
∂L
∂Z2

(note that dZ2 ∈ Rm×1)

∂L
∂Z2

=
∂L
∂A2

∂A2

∂Z2
=
[− Y
A2

+
(1− Y)

(1−A2)

]∂g2(Z2)

∂Z2
=
[− Y
A2

+
(1− Y)

(1−A2)

]
g′2(Z2)

⇒
∂L
∂Z2

=
[− Y
A2

+
(1− Y)

(1−A2)

]
g2(Z2)

(
1− g2(Z2)

)
(since σ′(u) = σ(u)(1− σ(u))

⇒
∂L
∂Z2

=
[− Y
A2

+
(1− Y)

(1−A2)

]
A2(1−A2) = A2 − Y (8)

2

• Computing dW2 =
∂L
∂W2

(note that dW2 ∈ R1×h)

∂L
∂W2

=
∂L
∂Z2

∂Z2

∂W2
=

∂L
∂Z2

A1 = dZT
2 A1 (the transpose follows from the shape of the matrices involved) (9)

There is a small caveat in this derivation. When we have m data points in a batch, the derivative dW2 will
contain contributions from each single data point, and these individual contributions are summed up to get
the final value of dW2. To understand this more clearly, let us consider that m = 3, h = 2, and let

dZ2 =

z11z21
z31

A1 =

a11 a12
a21 a22
a31 a32

 (10)

Thus,
dW2 = dZT

2 A1 =
(
z11a11 + z21a21 + z31a31 z11a12 + z21a22 + z31a32

)
(11)

In general, for m data points in a batch,

dW2 =

(m∑
j

zj1aj1
m∑
j

zj1aj2

)
(12)

To make the value of dW2 independent of the batch size m, we divide the sums by m, which gives us

dW2 =
1

m

(m∑
j

zj1aj1
m∑
j

zj1aj2

)
(13)

And so, finally we have

dW2 =
1

m
dZT

2 A1 (14)

• Computing db2 =
∂L
∂b2

(note that db2 ∈ R1×1)

∂L
∂b2

=
∂L
∂Z2

∂dZ2

∂db2
=

∂L
∂Z2

= dZ2 (15)

But this derivation is not yet done. Let us again consider that m = 3, h = 2, and let

dZ2 =

z11z21
z31

 (16)

So dZ2 will contain 1 row for each of the m data points. Moreover, we need to make the dimension of db2,
the same as b2 ∈ R1×1. To do this, we compute the average of the rows in dZ2, and so we get

∂L
∂b2

=
1

m

(m∑
j

zj1

)
=

1

m

∑
along rows

dZ2 (17)

• Computing dA1 =
∂L
∂A1

(note that dA1 ∈ Rm×h)

∂L
∂A1

=
∂L
∂Z2

∂Z2

∂A1
=

∂L
∂Z2

W2 = dZ2W2 (18)

• Computing dZ1 =
∂L
∂Z1

(note that dZ1 ∈ Rm×h)

∂L
∂Z1

=
∂L
∂A1

∂A1

∂Z1
=
(∂L
∂Z2

W2

)
�
(∂g1(Z1)

∂Z1

)
⇒

∂L
∂Z1

=
(∂L
∂Z2

W2

)
� (1−A2

1) (since g1 = tanh, and g1(u)′ = 1− g21(u))

⇒
(

dZ2W2

)
� (1−A2

1) (element-wise multiplication follows from the matrix shapes) (19)

3

• Computing dW1 =
∂L
∂W1

(note that dW1 ∈ Rh×D)

∂L
∂W1

=
∂L
∂Z1

∂Z1

∂W1
=

∂L
∂Z1

X = dZT
1 X (transpose follows from the matrix shapes) (20)

Applying the same logic we did while computing dW2, we get

dW1 =
1

m
dZT

1 X (21)

• Computing db1 =
∂L
∂b1

(note that db1 ∈ R1×h)

∂L
∂b1

=
∂L
∂Z1

∂Z1

∂b1
=

∂L
∂Z1

= dZ1 (22)

Again, using the logic for computing db2, we average the rows of dZ1 ∈ Rm×h to get db1 ∈ R1×h.

db1 =
1

m

∑
along rows

dZ1 (23)

Thus, the backpropagation equations can be summarized as:

dZ2 =
∂L
∂Z2

= A2 − Y (24)

dW2 =
∂L
∂W2

=
1

m
dZT

2 A1 (25)

db2 =
∂L
∂b2

=
1

m

∑
along rows

dZ2 (26)

dZ1 =
∂L
∂Z1

=
(

dZ2W2

)
� (1−A2

1) (27)

dW1 =
∂L
∂W1

=
1

m
dZT

1 X (28)

db1 =
∂L
∂b1

=
1

m

∑
along rows

dZ1 (29)

4

