Derivations for Backpropagation

Sayantan Auddy

This document contains derivations for backpropagation for a fully connected neural network with 1 hidden layer.

Figure 1: Fully connected neural network with 1 hidden layer. Here, the dimension of each data point is $D=2$ and there are m data points in a batch. There are h units in the hidden layer.

Let us consider the neural network as a graph. We are passing in data $X \in \mathbb{R}^{m \times D}$ into the network which will perform binary classification. Here m is the number of data points in X and D is the dimension of each data point. Under these assumptions, the forward propagation step computes the following:

$$
\begin{align*}
& Z_{1}=X W_{1}^{T}+b_{1} \tag{1}\\
& A_{1}=g_{1}\left(Z_{1}\right)\left(\text { where } g_{1}\right. \text { is the activation function of layer 1) } \tag{2}\\
& Z_{2}=A_{1} W_{2}^{T}+b_{2} \tag{3}\\
& A_{2}=g_{2}\left(Z_{2}\right) \text { (where } g_{2} \text { is the activation function of the output layer) } \tag{4}
\end{align*}
$$

The operations of the forward pass are shown as a graph below:

Figure 2: Forward propagation graph.

It makes sense at this point to be aware of the dimensions of the various variables involved. These are specified below:

$$
\begin{aligned}
X & \in \mathbb{R}^{m \times D} \\
W_{1} & \in \mathbb{R}^{h \times D}, b_{1} \in \mathbb{R}^{1 \times h} \\
Z_{1} & \in \mathbb{R}^{m \times h}, A_{1} \in \mathbb{R}^{m \times h} \\
W_{2} & \in \mathbb{R}^{1 \times h}, b_{2} \in \mathbb{R}^{1 \times 1} \\
Z_{2} & \in \mathbb{R}^{m \times 1}, A_{2} \in \mathbb{R}^{m \times 1}
\end{aligned}
$$

The loss \mathcal{L} is given by

$$
\begin{equation*}
\mathcal{L}\left(A_{2}, Y\right)=\frac{1}{m} \sum_{i=1}^{m}\left(-Y^{(i)} \log \left(A_{2}^{(i)}\right)-\left(1-Y^{(i)}\right) \log \left(1-A_{2}^{(i)}\right)\right) \tag{5}
\end{equation*}
$$

We need the final loss to be a scalar value and so we compress the loss by taking the average the term ($\left.Y^{(i)} \log \left(A_{2}^{(i)}\right)-\left(1-Y^{(i)}\right) \log \left(1-A_{2}^{(i)}\right)\right)$ for each data point i. However, for computing the derivatives of the various terms shown in Fig. 2, we will consider the uncompressed loss:

$$
\begin{equation*}
\mathcal{L}\left(A_{2}, Y\right)=-Y \log \left(A_{2}\right)-(1-Y) \log \left(1-A_{2}\right) \tag{6}
\end{equation*}
$$

Now, let's derive the gradients for the various elements in the graph shown in Fig. 2. In the code, we use the shorthand notation $\mathrm{d} z_{2}$ to mean $\frac{\partial \mathcal{L}}{\partial z_{2}}$ and so on. Throughout the following derivations, we will be using the chain rule for differentiation. The forward and backward operations (in red) are summarized together in Fig. 3 .

Figure 3: Forward and backward propagation.

- Computing $\mathrm{d} A_{2}=\frac{\partial \mathcal{L}}{\partial A_{2}}\left(\right.$ note that $\left.\mathrm{d} A_{2} \in \mathbb{R}^{m \times 1}\right)$

$$
\begin{align*}
\mathcal{L}\left(A_{2}, Y\right) & =-Y \log \left(A_{2}\right)-(1-Y) \log \left(1-A_{2}\right) \\
\text { Hence } \frac{\partial \mathcal{L}}{\partial A_{2}} & =\frac{-Y}{A_{2}}+\frac{(1-Y)}{\left(1-A_{2}\right)} \tag{7}
\end{align*}
$$

- Computing $\mathrm{d} Z_{2}=\frac{\partial \mathcal{L}}{\partial Z_{2}}$ (note that $\mathrm{d} Z_{2} \in \mathbb{R}^{m \times 1}$)

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial Z_{2}}=\frac{\partial \mathcal{L}}{\partial A_{2}} \frac{\partial A_{2}}{\partial Z_{2}}=\left[\frac{-Y}{A_{2}}+\frac{(1-Y)}{\left(1-A_{2}\right)}\right] \frac{\partial g_{2}\left(Z_{2}\right)}{\partial Z_{2}}=\left[\frac{-Y}{A_{2}}+\frac{(1-Y)}{\left(1-A_{2}\right)}\right] g_{2}^{\prime}\left(Z_{2}\right) \\
& \Rightarrow \frac{\partial \mathcal{L}}{\partial Z_{2}}=\left[\frac{-Y}{A_{2}}+\frac{(1-Y)}{\left(1-A_{2}\right)}\right] g_{2}\left(Z_{2}\right)\left(1-g_{2}\left(Z_{2}\right)\right)\left(\text { since } \sigma^{\prime}(u)=\sigma(u)(1-\sigma(u))\right. \\
& \Rightarrow \frac{\partial \mathcal{L}}{\partial Z_{2}}=\left[\frac{-Y}{A_{2}}+\frac{(1-Y)}{\left(1-A_{2}\right)}\right] A_{2}\left(1-A_{2}\right)=A_{2}-Y \tag{8}
\end{align*}
$$

- Computing $\mathrm{d} W_{2}=\frac{\partial \mathcal{L}}{\partial W_{2}}$ (note that $\mathrm{d} W_{2} \in \mathbb{R}^{1 \times h}$)

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial W_{2}}=\frac{\partial \mathcal{L}}{\partial Z_{2}} \frac{\partial Z_{2}}{\partial W_{2}}=\frac{\partial \mathcal{L}}{\partial Z_{2}} A_{1}=\mathrm{d} Z_{2}^{T} A_{1} \text { (the transpose follows from the shape of the matrices involved) } \tag{9}
\end{equation*}
$$

There is a small caveat in this derivation. When we have m data points in a batch, the derivative $\mathrm{d} W_{2}$ will contain contributions from each single data point, and these individual contributions are summed up to get the final value of $\mathrm{d} W_{2}$. To understand this more clearly, let us consider that $m=3, h=2$, and let

$$
\mathrm{d} Z_{2}=\left(\begin{array}{l}
z_{11} \tag{10}\\
z_{21} \\
z_{31}
\end{array}\right) A_{1}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)
$$

Thus,

$$
\begin{equation*}
\mathrm{d} W_{2}=\mathrm{d} Z_{2}^{T} A_{1}=\left(z_{11} a_{11}+z_{21} a_{21}+z_{31} a_{31} \quad z_{11} a_{12}+z_{21} a_{22}+z_{31} a_{32}\right) \tag{11}
\end{equation*}
$$

In general, for m data points in a batch,

$$
\mathrm{d} W_{2}=\left(\begin{array}{ll}
\sum_{j}^{m} z_{j 1} a_{j 1} & \sum_{j}^{m} z_{j 1} a_{j 2} \tag{12}
\end{array}\right)
$$

To make the value of $\mathrm{d} W_{2}$ independent of the batch size m, we divide the sums by m, which gives us

$$
\begin{equation*}
\mathrm{d} W_{2}=\frac{1}{m}\left(\sum_{j}^{m} z_{j 1} a_{j 1} \quad \sum_{j}^{m} z_{j 1} a_{j 2}\right) \tag{13}
\end{equation*}
$$

And so, finally we have

$$
\begin{equation*}
\mathrm{d} W_{2}=\frac{1}{m} \mathrm{~d} Z_{2}^{T} A_{1} \tag{14}
\end{equation*}
$$

- Computing $\mathrm{d} b_{2}=\frac{\partial \mathcal{L}}{\partial b_{2}}$ (note that $\mathrm{d} b_{2} \in \mathbb{R}^{1 \times 1}$)

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial b_{2}}=\frac{\partial \mathcal{L}}{\partial Z_{2}} \frac{\partial d Z_{2}}{\partial d b_{2}}=\frac{\partial \mathcal{L}}{\partial Z_{2}}=\mathrm{d} Z_{2} \tag{15}
\end{equation*}
$$

But this derivation is not yet done. Let us again consider that $m=3, h=2$, and let

$$
\mathrm{d} Z_{2}=\left(\begin{array}{l}
z_{11} \tag{16}\\
z_{21} \\
z_{31}
\end{array}\right)
$$

So $\mathrm{d} Z_{2}$ will contain 1 row for each of the m data points. Moreover, we need to make the dimension of $\mathrm{d} b_{2}$, the same as $b_{2} \in \mathbb{R}^{1 \times 1}$. To do this, we compute the average of the rows in $\mathrm{d} Z_{2}$, and so we get

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial b_{2}}=\frac{1}{m}\left(\sum_{j}^{m} z_{j 1}\right)=\frac{1}{m} \sum_{\text {along rows }} \mathrm{d} Z_{2} \tag{17}
\end{equation*}
$$

- Computing $\mathrm{d} A_{1}=\frac{\partial \mathcal{L}}{\partial A_{1}}$ (note that $\left.\mathrm{d} A_{1} \in \mathbb{R}^{m \times h}\right)$

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial A_{1}}=\frac{\partial \mathcal{L}}{\partial Z_{2}} \frac{\partial Z_{2}}{\partial A_{1}}=\frac{\partial \mathcal{L}}{\partial Z_{2}} W_{2}=\mathrm{d} Z_{2} W_{2} \tag{18}
\end{equation*}
$$

- Computing $\mathrm{d} Z_{1}=\frac{\partial \mathcal{L}}{\partial Z_{1}}\left(\right.$ note that $\left.\mathrm{d} Z_{1} \in \mathbb{R}^{m \times h}\right)$

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial Z_{1}}=\frac{\partial \mathcal{L}}{\partial A_{1}} \frac{\partial A_{1}}{\partial Z_{1}}=\left(\frac{\partial \mathcal{L}}{\partial Z_{2}} W_{2}\right) \odot\left(\frac{\partial g_{1}\left(Z_{1}\right)}{\partial Z_{1}}\right) \\
& \Rightarrow \frac{\partial \mathcal{L}}{\partial Z_{1}}=\left(\frac{\partial \mathcal{L}}{\partial Z_{2}} W_{2}\right) \odot\left(1-A_{1}^{2}\right)\left(\text { since } g_{1}=\text { tanh, and } g_{1}(u)^{\prime}=1-g_{1}^{2}(u)\right) \\
& \Rightarrow\left(\mathrm{d} Z_{2} W_{2}\right) \odot\left(1-A_{1}^{2}\right) \text { (element-wise multiplication follows from the matrix shapes) } \tag{19}
\end{align*}
$$

- Computing $\mathrm{d} W_{1}=\frac{\partial \mathcal{L}}{\partial W_{1}}$ (note that $\mathrm{d} W_{1} \in \mathbb{R}^{h \times D}$)

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial W_{1}}=\frac{\partial \mathcal{L}}{\partial Z_{1}} \frac{\partial Z_{1}}{\partial W_{1}}=\frac{\partial \mathcal{L}}{\partial Z_{1}} X=\mathrm{d} Z_{1}^{T} X \text { (transpose follows from the matrix shapes) } \tag{20}
\end{equation*}
$$

Applying the same logic we did while computing $\mathrm{d} W_{2}$, we get

$$
\begin{equation*}
\mathrm{d} W_{1}=\frac{1}{m} \mathrm{~d} Z_{1}^{T} X \tag{21}
\end{equation*}
$$

- Computing $\mathrm{d} b_{1}=\frac{\partial \mathcal{L}}{\partial b_{1}}$ (note that $\left.\mathrm{d} b_{1} \in \mathbb{R}^{1 \times h}\right)$

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial b_{1}}=\frac{\partial \mathcal{L}}{\partial Z_{1}} \frac{\partial Z_{1}}{\partial b_{1}}=\frac{\partial \mathcal{L}}{\partial Z_{1}}=\mathrm{d} Z_{1} \tag{22}
\end{equation*}
$$

Again, using the logic for computing $\mathrm{d} b_{2}$, we average the rows of $\mathrm{d} Z_{1} \in \mathbb{R}^{m \times h}$ to get $\mathrm{d} b_{1} \in \mathbb{R}^{1 \times h}$.

$$
\begin{equation*}
\mathrm{d} b_{1}=\frac{1}{m} \sum_{\text {along rows }} \mathrm{d} Z_{1} \tag{23}
\end{equation*}
$$

Thus, the backpropagation equations can be summarized as:

$$
\begin{align*}
\mathrm{d} Z_{2} & =\frac{\partial \mathcal{L}}{\partial Z_{2}}=A_{2}-Y \tag{24}\\
\mathrm{~d} W_{2} & =\frac{\partial \mathcal{L}}{\partial W_{2}}=\frac{1}{m} \mathrm{~d} Z_{2}^{T} A_{1} \tag{25}\\
\mathrm{~d} b_{2} & =\frac{\partial \mathcal{L}}{\partial b_{2}}=\frac{1}{m} \sum_{\text {along rows }} \mathrm{d} Z_{2} \tag{26}\\
\mathrm{~d} Z_{1} & =\frac{\partial \mathcal{L}}{\partial Z_{1}}=\left(\mathrm{d} Z_{2} W_{2}\right) \odot\left(1-A_{1}^{2}\right) \tag{27}\\
\mathrm{d} W_{1} & =\frac{\partial \mathcal{L}}{\partial W_{1}}=\frac{1}{m} \mathrm{~d} Z_{1}^{T} X \tag{28}\\
\mathrm{~d} b_{1} & =\frac{\partial \mathcal{L}}{\partial b_{1}}=\frac{1}{m} \sum_{\text {along rows }} \mathrm{d} Z_{1} \tag{29}
\end{align*}
$$

